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Introduction:
GT Combustor Liner Buckling and Cracking

• GT combustor liners are susceptible to:
• Buckling (high T and high T)
• Cracking (LCF – transients (TO/ACC))

• Hot spots may arise due to:
• Distortion of fuel spray

• Defective atomisers / Misalignment of atomisers in the chamber
• Build up of carbon on face of atomiser

• Obstruction to the cooling flow (igniter plugs, liner support struts etc.)  breakdown in convective cooling
• Blockage between liner tiles and liner for DSCs (particularly during operation in hot and sandy environments)

• Cracks originate at geometrical discontinuities (cooling strips, air admission holes etc.) or at any points where
large residual stress are induced during manufacture

Inner & Outer Liner Cracks
Ref: Tinga, T., van Kampen, J.F., de Jager, B. and Kok, J.B., 2006, “Gas

Turbine Combustor Line Life Assessment Using a Combined
Fluid/Structural Approach”, ASME Journal of Engineering for Gas
Turbines and Power, 129(1). doi:10.1115/1.2360603.
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Introduction:
Need for Efficient Methods for Liner Cooling

• Requirement for improvement in turbofan SFC  th & prop
• th  OPR & TET
• OPR  T3 & P3 

• Heat transfer by radiation from combustion gases to liner wall 
• Difficult for annulus air to cool liner wall by convection

• > 1/3 of total combustor airflow is used for film cooling the liner
• TET  improvements in TTQ and RTD required (Wcooling, Wmixing)

• Lean burning for low emission combustors  more air allocated for combustion
• Less air available for film cooling
• Less film cooling air also beneficial for lowering CO and UHC

• As combustor operating temperatures have increased so have component durability expectations (many thousands of 
operating hours before maintenance) 
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Heat Transfer Process

Ref: Lefebvre. A. H., 2010, “Gas Turbine 
Combustion”, 3rd Edition, McGraw Hill
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Heat Transfer Process

121222111 )()( AwKAwCRAwKCR  

• For an element with inside surface area Aw1:

212211  KCRCR

• Assuming:

• K is negligible compared to R1, R2, C1 and C2

• Liner wall is usually so thin  Aw1 = Aw2

• Under equilibrium conditions, internal and external heat fluxes at any point are equal


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Heat Transfer Process:
Conduction through the Liner Wall (K1-2)

 2121 TwTw
tw

kw
K 

kw: Liner wall thermal conductivity (W/mK)
tw: Liner wall thickness (m)
Tw1: Temperature of inner wall of liner (K)
Tw2: Temperature of outer wall of liner (K) 
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Heat Transfer Process:
Internal Radiation (R1)

• Largest amount of heat transferred to the liner wall is by R1

• C1 comparatively small (negligible if cooling air forms a barrier between liner wall and hot gases)

Internal Radiation (R1)

Luminous Radiation
• Radiation from solid particles 

(black bodies - mainly soot)
• IR, visible and UV spectrum

Nonluminous Radiation
• Radiation from hetero-polar gases (mainly CO2 and H2O) and 

intermediate products of combustion (CO and OH)
• IR and UV spectrum only
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Heat Transfer Process:
Internal Radiation (R1)

 4

1
4

1 gTwgTgR  

• For a black body surface:

:  Stefan-Boltzmann constant = 5.67 x 10-8 W/(m2K4)

g: Gas emissivity at temperature Tg (T3 + Tcomb)
• Relates to radiation emitted from the gas to the wall

g: Gas absorptivity at temperature Tw1

• Based on radiation of the wall 

Functions of gas props.

• But liner surface is not a black body – can be considered as a grey body 

 4

1
4

1 )1(5.0 gTwgTgwR  

• Accounts for liner surface  ≠ 1
• w dependent on material, temperature & degree of oxidation
• Typical values of w : Nimonic – 0.7, Stainless steel – 0.8
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Heat Transfer Process:
Internal Radiation (R1)

 4

1
4

1 )1(5.0 gTwgTgwR  

• Studies have shown, to a close approximation:
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Heat Transfer Process:
Internal Radiation (R1) - Emissivity

• Emissivity for nonluminous flames:

 5.15.0)(290exp1  TgqlPg b

P: Gas pressure (KPa)
Tg: Gas temperature (K)
q: FAR by mass
lb: Beam length (m) (lb  3.4 (volume) / (surface area))

• For tubular: lb  0.6DL – 0.9DL

• For annular: lb(inner)  1.0DL & lb(outer)  1.2DL

DL: liner diameter (can) or height (annular)

Beam length: Radius of gas hemisphere which at the same temperature as the combustion gases, radiates to a unit area at the centre of its base the
same average radiation as the combustion gases radiate to a unit area of the flame tube
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Heat Transfer Process:
Internal Radiation (R1) - Emissivity

• Emissivity for luminous flames:

 5.15.0)(290exp1  TgqlPLg b

Luminosity factor

75.0)2.5/(3  HCL

2/336 HL 

• Correlations for determining L (examples):

Lefebvre (1960)

Lefebvre (1985)

C/H: Carbon to hydrogen ratio of the fuel by mass
H: Fuel hydrogen content by mass (%)
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Luminous Radiation:
Influence of Fuel Composition and P3

Ref: Lefebvre. A. H., 1983, “Gas Turbine 
Combustion”, 1st Edition, McGraw Hill
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Effect of Fuel Hydrogen Content on Liner Temperature at Cruise

Ref: Lefebvre. A. H., 1983, “Gas Turbine 
Combustion”, 1st Edition, McGraw Hill

NB: Results are for combustors with
pressure atomisers and rich
combustion zones. For air blast
atomisers and lean combustion
zones sensitivity to hydrogen
content is lower

 KTK 756547 3 
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Effect of Fuel Hydrogen Content on Combustor Life

Ref: Gleason, CC. et al. “Evaluation of Fuel Character Effects on J79 Combustion System” Report No. AFAPL-TR 79-2015 (CEEDO-
TR-79-06), General Electric Company. Aircraft Engine Group, Cincinnati, Ohio, June 1979.

Ref: Gleason, CC. et al. “Evaluation of Fuel Character Effects on the FIO Engine Combustion System” Report No. AFAPL-TR-79-2018
(CEEDO-TR-79-07) General Electric Company. Aircraft Engine Group, Cincinnati, Ohio, June 1979.

% Hydrogen in Fuel
Relative Combustor Life 

J79 F101

14.5 1.00 1.00

14.0 0.78 0.72

13.0 0.52 0.52

12.0 0.35 0.47
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Effect of Luminosity on Heat Transfer Terms
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Heat Transfer Process:
External Radiation (R2)
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• R2 << C2

• Significance of R2 increases with Tw1 (can be neglected at low values)

• Simplified expressions (due to lack of knowledge of wall emissivities): 

c: Casing emissivity 
Tw2: Temperature of coolant side of liner wall (K)
Aw: Surface area of the liner wall (m2)
Ac: Surface area of the casing (m2)

)(4.0
4

3

4

22 TTwR  

)(6.0
4

3

4

22 TTwR  

For Aluminium Air Casing:  

For Steel Air Casing:  
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Heat Transfer Process:
Internal Convection (C1)

• Most difficult heat transfer term to determine accurately:
• Gases at high temperature and undergo rapid physical and chemical changes
• Steep gradients of temperature, velocity and composition in primary zone
• Uncertainties regarding air flow patterns, BL development

• In absence of more exact data, assuming classical heat transfer for straight pipes apply for the liner:

)(020.0 1

8.0

2.01 TwTg
gA

mg

D

kg
C

LL













kg: Thermal conductivity of the gas (W/mK)
mg: Mass flow rate of the gas (kg/s)
AL: Cross sectional area of the liner (m2)
g: Dynamic viscosity of the gas (kg/ms)








 


PerimeterWetted

areaflowtionalCross
DL

sec
4

C1pz 0.017
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Heat Transfer Process:
External Convection (C2)

)(020.0 32
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ka: Thermal conductivity of the annulus air (W/mK)
man: Mass flow rate of the annulus air (kg/s)
Aan: Cross sectional area of the annulus (m2)
a: Dynamic viscosity of the annulus air (kg/ms)
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
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


 


PerimeterWetted

areaflowtionalCross
Dan

sec
4

• For tubular: Dan = Dref – DL

• For annular: Dan = 2 x local annulus height 
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Heat Transfer Process:
Calculation of “Uncooled” Liner Temperature

1. Estimate mean FAR for zone being considered
• For maximum possible Tw  use FARStoich

2. Obtain R1

3. Obtain R2

4. Calculate C1

• Values of k and  for combustion products at Tg

5. Calculate C2

• Values of k and  for air at T3

6. Using:   21212211  KTwTw
tw

kw
CRCR solve for Tw1 & Tw2

• Calculation useful for: 
• Determining supplementary cooling requirement
• Qualitative prediction of the effect of any change in inlet conditions 
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Heat Transfer Process:
Effect of Chamber Variables

• Increase in pressure
• Increase in R1

• Increase in g (dominant until g = 1)
• Slight increase in flame temperature (supresses dissociation) 

• Increase in C2

• Increase in (man / Aan)

• Increase in inlet air temperature
• Increase in R1 & C1 (higher Tg)
• Decrease in R2 & C2 (higher T3)

• AFR
• Tg (R1, C1 and Tw) greatest at  (1.1 x )

• Increase in air mass flow rate
• R1 & R2 independent of m3

• C1 & C2  m3
0.8

• C2 accounts for most of heat transfer from liner
• C1 accounts for only about half of heat transfer to liner 

Tw

Tw
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Combustor Cooling:
Film Cooling

 Air injected axially (via annular slots at  40 - 80mm intervals) along the length of liner to provide protective film of cooling 
air between the wall & hot gases

 Cooling film gradually destroyed by turbulent mixing with hot gas stream

 At the downstream end of the liner flow acceleration supresses turbulence and film persists for a greater distance

 Cooling slots can be designed to withstand severe pressure and thermal
stresses at high temperatures, up to several thousand hours

 Stiffness provided by cooling slots results in liner construction which is
light and robust
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Combustor Cooling:
Film Cooling

X Does not allow uniform wall temperature 
inherently wasteful of cooling air
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Combustor Cooling:
Film Cooling

 More uniform wall temperature (less overcooling)

X Heavy and complex combustor

 Infinite cooling arrangement  uniform wall temperature

X Static pressure drop across liner may not be sufficient 
double skin combustor may be required
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Film Cooling Techniques:
“Total Pressure” Devices: Wigglestrips

• Corrugated spacer between annular clearance of liner sections

 Mechanically robust structure
(earlier designs had limited liner life as they were joined together by “fluting”)

X Poor aerodynamic quality of cooling film  long hot streaks downstream of slots

X Wide variations in cooling air quantity between seemingly identical liners
(due to slight differences in wigglestrip material thickness – even within normal manufacturing 
tolerances)

Ref: Lefebvre. A. H., 2010, “Gas Turbine 
Combustion”, 3rd Edition, McGraw Hill

Applications: 
• Avon
• Spey
• Cannular Olympus 
• Pegasus
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Film Cooling Techniques:
“Total Pressure” Devices: Stacked Rings

• Punched or drilled air admission holes

• Flow area of holes calculated to meter required amount of
cooling air

• Aft end of previous liner provides plenum in which turbulence
is dissipated

• At the downstream end gap width is dimensioned to give
required air velocity

 Dimensional accuracy of holes is higher than wigglestrip resulting in smaller variations in
cooling air flow rate

 Cooling air velocity can be fixed at optimum value for maximum cooling effectiveness
regardless of liner pressure drop

X Less rigid mechanical construction than wigglestrip

Ref: Lefebvre. A. H., 2010, “Gas Turbine 
Combustion”, 3rd Edition, McGraw Hill
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Film Cooling Techniques:
Splash-Cooling Rings and Machined Rings

Splash-Cooling Ring

• Cooling air bled from annulus through row of small holes in
the wall & along inner surface of liner by internal “lip”

• Lip length  4X slot depth (1.5 -3.0mm)

Ref: Lefebvre. A. H., 2010, “Gas Turbine 
Combustion”, 3rd Edition, McGraw Hill

Machined Ring

• Annulus air enter cooling slot by total/static
pressure differential or both

• RB211 combustor & in conjunction with AEC &
SAEC in Trent combustor

 More accurate control of cooling air quantity

 Marked improvement in liner strength
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Film Cooling Techniques:
Rolled Rings

Ref: Lefebvre. A. H., 2010, “Gas Turbine Combustion”, 3rd Edition, McGraw Hill

 Stacked and machined rings liners experience steep temperature gradients between slot lip and metal adjacent to
cooling air feed holes  high stress  liner distortion and cracking

• Fabricated from series of rings that are rolled into shape and welded together

• Static pressure feeds provide impingement cooling to the rolled ring before emerging from the slot for film cooling

GE Rolled Ring P&W Double-Pass Ring
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Film Cooling Techniques:
Z Rings

Ref: Lefebvre. A. H., 2010, “Gas Turbine 
Combustion”, 3rd Edition, McGraw Hill

 Superior cooling performance

 Eliminates life limitation due to lip cracking

 “Zero lip length” design (reduction in initial diameter of jets)

 Large number of closely pitched, small diameter holes ensures jets mix
quickly to form a uniform film without needing protection of a lip

 Design made possible by increased availability of electrical discharge
machining & laser drilling techniques

X High cost of drilling large number of small holes 
(improved manufacturing methods should alleviate this problem)

X Requires careful control width between holes and other critical dimensions to ensure satisfactory 
integrity without loss of cooling performance

RR Z Ring
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Advanced Wall Cooling Techniques:
Double Skin Combustors

X Double wall construction  weight & cost penalties

X Temperature difference between two walls  buckling of inner wall

Film Cooling + AEC
Augmented external convection  C2

Multi-jet Impingement + Film Cooling
Similar to AEC but double wall passage is blocked at upstream end

 Substantial reduction in film cooling air flow requirement

 Jets can be positioned to provide extra cooling on liner hot spots (MJI only)

 Cooling air serves dual purpose (MJI Only)
• Jets provide impingement cooling to one section of liner wall and then merge to provide further film cooling

Ref: Lefebvre. A. H., 2010, 
“Gas Turbine Combustion”, 

3rd Edition, McGraw Hill
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Advanced Wall Cooling Techniques:
Transpiration Cooling

 Substantial reduction in C1 possible

 Closest to ideal cooling arrangement (ideal wall cooling  least wasteful)

X Conflict since in order to form a stable boundary layer on the inner surface,  coolant flow should emerge with as low 
a velocity as possible but if V  C2 

X Passages prone to blockages (susceptible to oxidation & airborne debris)

• Liner wall constructed from porous material  provides large SA for heat transfer

• Air jets from uniformly dispersed pores rapidly mix to provide a layer of cool air

• R1 removed by transfer to cooling air during its passage through the porous wall

Ref: Lefebvre. A. H., 2010, “Gas Turbine 
Combustion”, 3rd Edition, McGraw Hill
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Advanced Wall Cooling Techniques:
Transpiration Cooling – Practical Applications

X Passages prone to blockages (susceptible to 
oxidation & airborne debris)

X Weight and cost penalties

Ref: Lefebvre. A. H., 2010, “Gas Turbine 
Combustion”, 3rd Edition, McGraw Hill

Transply – RR Spey Mk 512 Combustor &
Lamilloy – RR formerly GM Allison Engine Company

• Produce by brazing two or more laminates of a
high temperature alloy

• Passages photo-chemically etched for maximum
heat transfer

• Liner cooled by both air passing through the wall
and leaving film cooling air

 70% reduction in cooling flow requirement

 Internal airflow distribution can be optimised for low emissions
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Advanced Wall Cooling Techniques:
Transpiration Cooling – Effusion Cooling

Effusion Cooling + Film Cooling

• Liner holes large enough to remain free form
blockages but small enough to prevent excessive
penetration of air jets

• Effusion cooling introduced (just before downstream
slot when film cooling has lost effectiveness

Selective Angled Effusion Cooling (GE90 Combustor  30% reduction in cooling air)

• Holes drilled at more shallow angle (as opposed to normal to liner wall)

 Increase in internal SA for heat removal (hole drilled at 20   3X SA)

 Shallow angle of emerging jets  lower penetration  better cooling effectiveness

X Thicker walls required for given hole length to prevent buckling  weight  ( 20%) 

Ref: Lefebvre. A. H., 2010, “Gas Turbine 
Combustion”, 3rd Edition, McGraw Hill
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Advanced Wall Cooling Techniques:
Transpiration Cooling – Effusion Cooling

 Tiles can be cast from higher temperature (by  100K) blade alloys

 Combustor shell remains at a uniform, lower temperature  cheap
alloys used & minimises thermal growth relative to casing

 Ease of maintenance (replacing tiles)

 Significant reduction in cooling air requirement

• Well established for large industrial engines using refractory bricks (heavy)

• Metallic tiles (lower weight) offer an attractive solution for aero applications

• Tiles mounted on a support shell (decouples thermal & mechanical loads)

Ref: Lefebvre. A. H., 2010, “Gas Turbine 
Combustion”, 3rd Edition, McGraw Hill

X Weight

X Difficult to scale down tile attachment
features for smaller engines



35

V2500 RQL Combustor:
Durability Issue – Case Study

Case study courtesy of J. Kraft and S. Kuntzagk (LHT)

CFD Analysis
• Investigation of a single segment (one of twenty sections)
• Calculated with periodic walls
• Simulation includes detailed representation of the double skin
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V2500 RQL Combustor:
Durability Issue – Case Study

Case study courtesy of J. Kraft and S. Kuntzagk (LHT)

CFD Analysis
• Large effort to develop representative model of the fuel atomisation (critical)
• Simulations compared with fuel injector experiments (comparison of spray angles)
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V2500 RQL Combustor:
Durability Issue – Case Study

Case study courtesy of J. Kraft and S. Kuntzagk (LHT)

CFD Results and Verification
• Hot spot just after dilution zone (change from rich to lean burn) clearly captured
• Verification of CFD with visual inspection of hardware
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Combustor Materials:
Thermal Barrier Coatings (TBCs)

• Suitable material of low emissivity and low conductivity reduces wall temperature:
• Reflects large part of gas radiation
• Provides layer of thermal insulation between hot gas and wall
• Further benefit if oxidant resistant base coat is applied

• Ideal TBC (additionally):
• Chemically inert
• Good mechanical strength (resilience to thermal shock, resistance to wear)
• Thermal expansion coefficient similar to base metal

• Typical TBC comprises
• A metallic base coat
• One or two layers of ceramics (partially yttria-stabilised zirconia)

• Typical thickness  0.4 – 0.5mm, Metal temperature reduction  80 – 120K

 i
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Combustor Materials

• Basic requirements

• High temperature strength
• Resistance to oxidation
• Resistance to corrosion
• Low density
• Low thermal expansion
• Low Young’s modulus
• Resistance to thermal fatigue
• Low cost
• Easy to fabricate
• High thermal conductivity

Material Max. Temperature (K)

Nimonic 75  973 - 1023

Hastelloy X  1023 – 1073

Nimonic C263  1023 – 1123

Haynes 188000 1173

TD Nickel  1173 – 1323

TBCs  +80 – 120

Ceramics  1573 – 1773
• Combustor casing must last for engine lifetime

• 15,000 hrs (marine)
• 25,000 hrs (civil aero)
• 100,000 hrs (industrial)
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