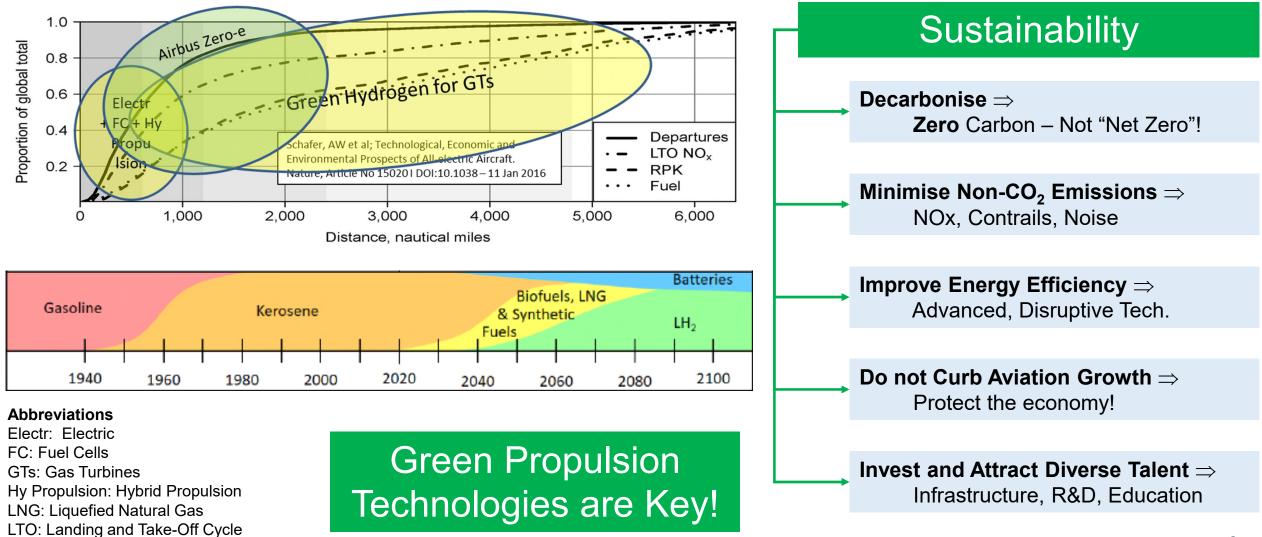


Hydrogen and Decarbonisation Workshop:

Hydrogen R&D

Dr. Vishal (Bobby) Sethi


Head - Low Emissions Technologies and Combustion (LETC) Group Centre for Propulsion and Thermal Power Engineering Cranfield University

RPK: Revenue per Passenger Kilometre

Civil Aviation Sustainability Protect the Environment and the Economy!

LH₂ – Fuelled Aircraft: CU Thought-leadership Example Innovation Waves to Accelerate Decarbonisation

Innovation Wave 1 10-15 Years Focus: Certification

ENABLE H2

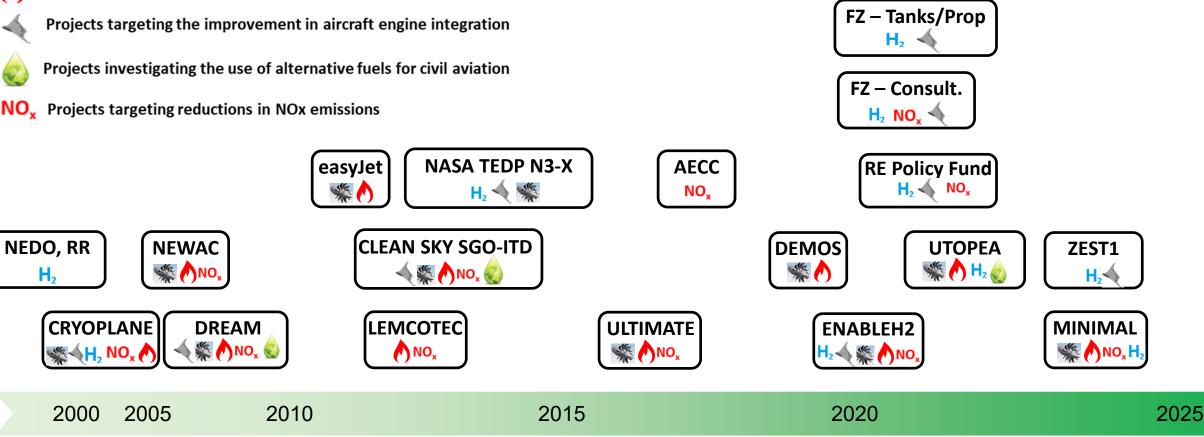
Innovation Wave 2b

20+ Years

Focus: FC Certification

Innovation Wave 3 30+ Years Focus: Turbo-cryo-electric

https://www.airbus.com/en/innovatio n/zero-emission/hydrogen/zeroe


https://www.ati.org.uk/flyzero/

H₂

Civil Aviation Sustainability: H₂ and Propulsion Systems CU Research Track Record (not Exhaustive)

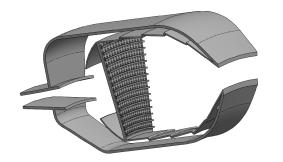
- Projects involving H₂ / LH₂ R&D H₂
 - Projects targeting improvement in engine propulsive efficiency
- Projects targeting improvement in engine thermal efficiency
 - Projects targeting the improvement in aircraft engine integration
 - Projects investigating the use of alternative fuels for civil aviation
- **NO**, Projects targeting reductions in NOx emissions

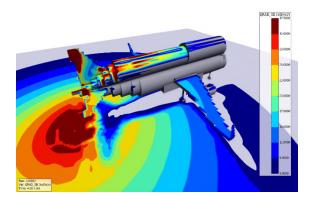
The Case for LH₂ for Civil Aviation

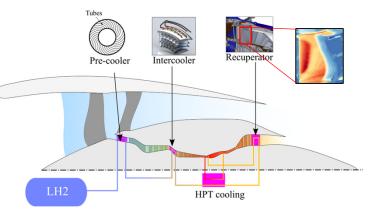
Significant benefit re. Jet-A1

Alternative Fuels and Production Routes		Drop-in replacements		LNG			LH ₂	
		Bio-fuels (from algae)	Synthetic Kerosene	Conventional / Fracking	Biomass	Synthetic LNG	Non-renewable	Renewable / Nuclear
Effect on Emission	ons relative to Jet-A1							
At Mission Level	CO ₂							
	Energy Efficiency							
	NO _x							
	CO and UHC							
	Soot / Particulates							
	Water Vapour							
	Contrails							
	CO ₂ emissions							
Over the Life Cycle (well to wake)	CH₄ emissions (leakage)							
(well to wake)	Long Term Sustainability							
Effect on Costs r	elative to Jet-A1							
	Fuel Production Costs							
Short-Medium Term	Aircraft Engineering Costs							
(up to 2050)	Airport Integration Costs							
	Life Cycle Costs							
	Fuel Production Costs							
Long Term	Aircraft Engineering Costs							
(beyond 2050)	Airport Integration Costs							
	Life Cycle Costs							
Effect on Safety	relative to Jet-A1							
Actual Safety Record i	n Transportation							
Likely Public Perception	on of Safety	1						
		8						
Кеу				Inferior to Jet-A1			No clear benefit re. Jet-A1	

Superior to Jet-A1


Indicates greater uncertainty

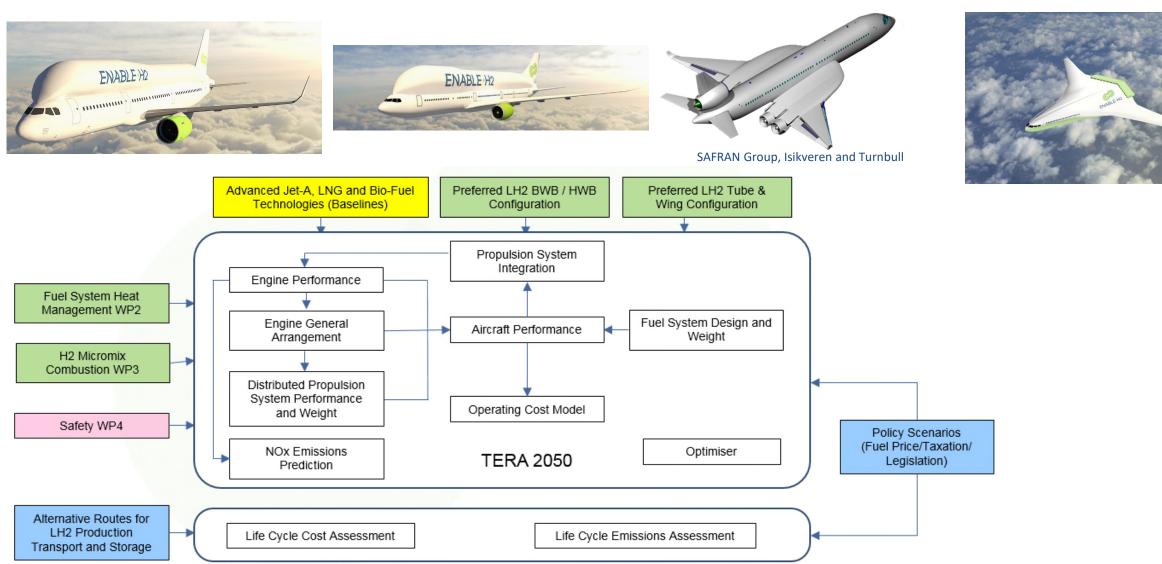




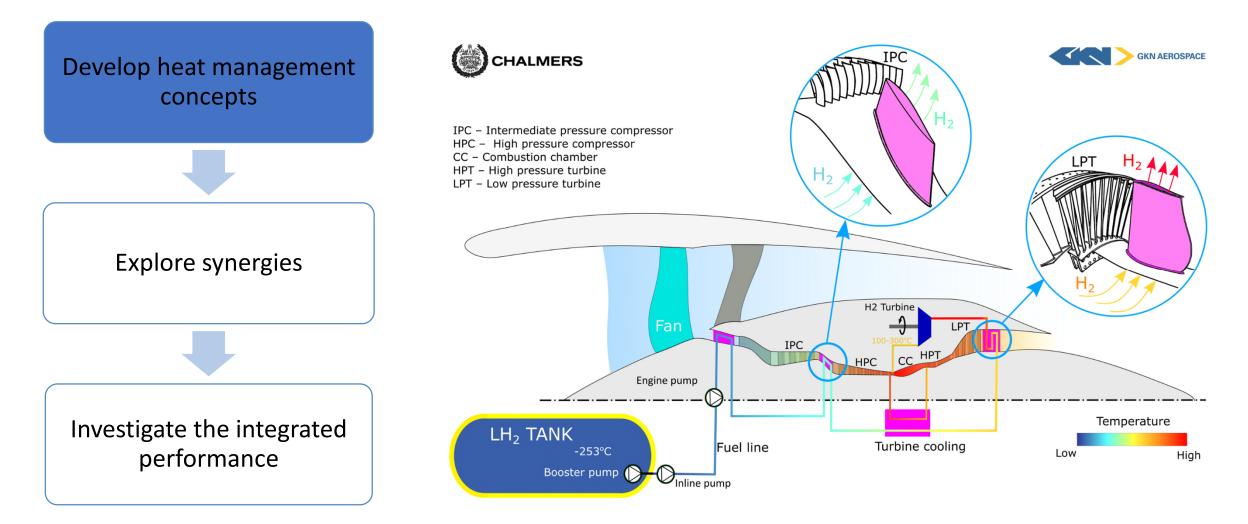
- EU H2020 Project ~4M€, 30+ Key Civil Aviation Stakeholders (partners + industry advisory board members)
- Maturing key enabling technologies for LH₂ which will contribute to decarbonising civil aviation (TRL 2 – TRL4):
 - 1. Hydrogen micromix combustion ultra low NOx
 - 2. Fuel system heat management exploiting LH₂'s formidable heat sink potential
 - 3. Technology evaluation Technoeconomic Environmental Risk Assessment (TERA)
- Addressing key challenges/scepticism economic viability and safety
- Establishing roadmaps for the introduction of LH₂

ENABLEH2

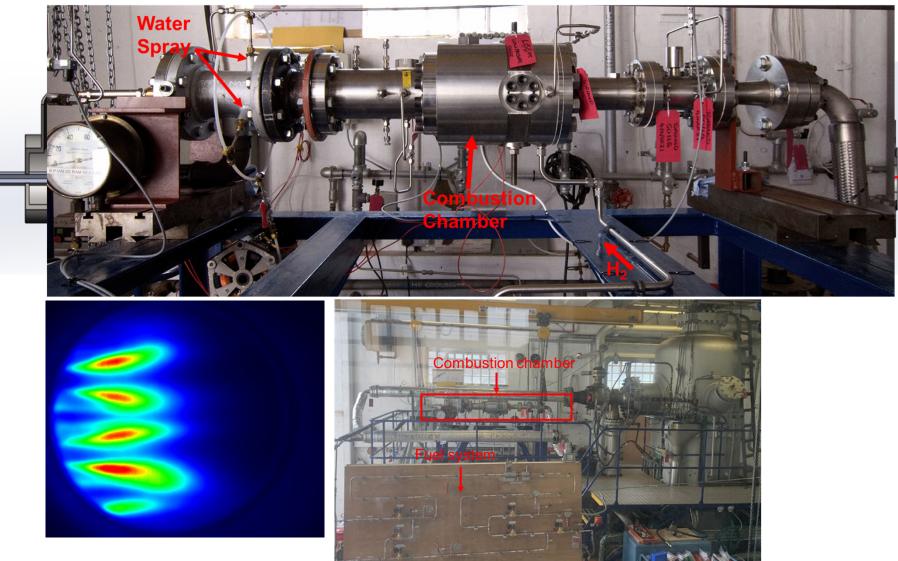
Good Collaboration between Key Civil Aviation Stakeholders



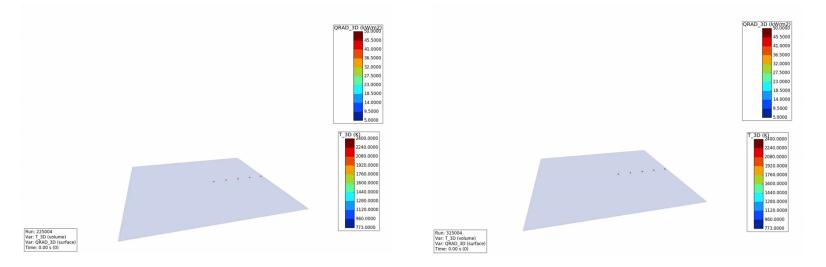
ENABLEH2 Project Overview Technology Evaluation – TERA (WP1)



ENABLEH2 Project Overview Fuel System heat Management (WP2)



ENABLEH2 Project Overview Low NOx H2 Micromix Combustion (WP3)



ENABLEH2 Project Overview Safety (WP4)

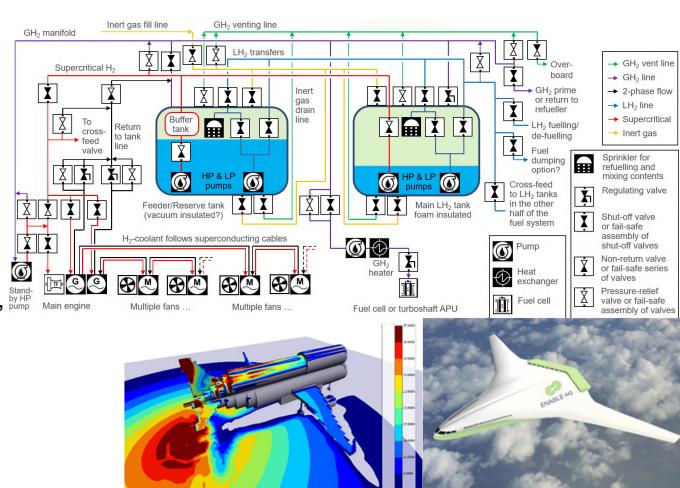
- Dispersion LH₂ clouds
 - Hazardous distance study
- RE test facility: LH₂ tank leak
 - LH₂ Leak Dispersion
 - Explosion overpressure
- Aircraft crash scenarios
 - Pool Fire simulations
 - LH_2 vs LNG vs JET A
- Aircraft refuelling study
 - LH₂ leak + explosion o/p

Liquid Hydrogen Jet A (Kerosene)

Comparison combustion product temperature and radiation heat flux

ENABLEH2 Project Overview Safety (WP4)

- PHA at Heathrow: Aircraft manufacturers, Airline, fire service
- New hazards examined or increases in severity and/or likelihood of harm
- Overall pragmatic & positive


Storage, on-site generation	Fuelling (and ground	Taxiing, take off, landing	Firefighting	
Scale & location	transport)			
ExplosionExisting mitigation	 Underground/vehicle/ robot supply Cryogenic/ fire hazards Many unknowns 	 Fuel leaks Runway excursion Similar hazards and prevention to Jet A 	 Largescale change Protocols & standards Training & equipment Whole fire service 	
-1 ·				

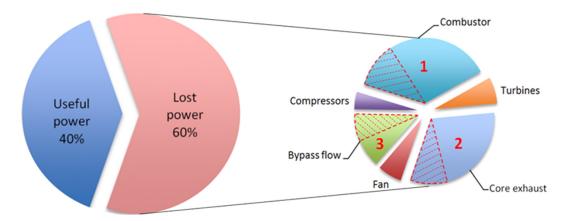
Zero Emissions Systems Technologies 1 (ZEST1)

- WP1.4.1: "LH₂ Technology Development"
- LH₂ Composite Tank and Engine Feed
- LH₂ Gauging, Sensors and Tank Fluid Movement modelling
- WP1.4.2: "LH₂ Safety, Regulations and Airport Operations"
- LH₂ Safety Development
- LH₂ Airport Regulations Development
- LH₂ Ground Infrastructure and Airport Operations
- WP1.4.3: "LH₂ Systems Development, Control and Evaluation" ^{Pure}
- LH₂ Systems Design and Control
- LH₂ Thermal and Fluid Modelling

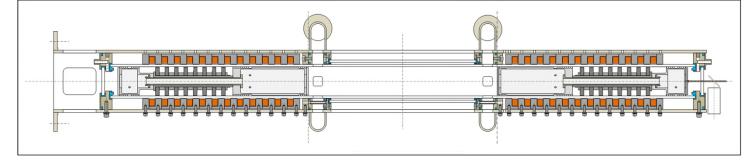
Delivery of multi-fidelity modelling suite for LH₂ tanks, gauging, sensors, sloshing, thermal management and control Definition of infrastructure requirements, safety and airport operational protocols Important (early) engagement with key civil aviation stakeholders including certification bodies Definition of future experimental campaigns for validating models and maturing technologies to expedite EIS

AIRBUS

Minimum Environmental Impact Ultra-Efficient Cores for Aircraft Propulsion (MINIMAL)


Project Partners:

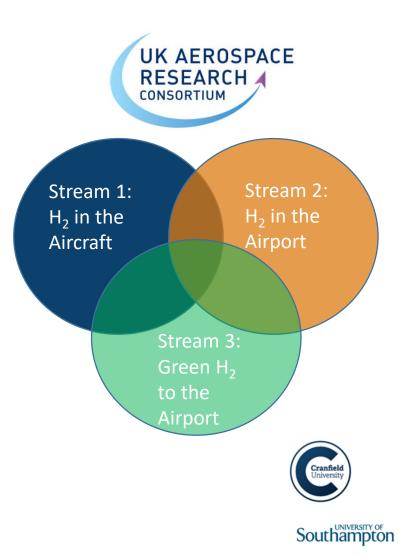
- Arttic innovation, Bauhaus Luftfahrt, MTU
- Aristotle University of Thessaloniki
- Technical University Delft


- Chalmers University (Coordinator), GKN Aerospace
- Cranfield University, Reaction Engines, Rolls Royce UK

"Assessing the potential of disruptive propulsion technologies to address the major loss sources of aero engines"

The MINIMAL project is receiving funding from the European Union's Horizon Europe research and innovation programme under grant agreement No: 101056863

UK partners are being funded by UKRI (IUK), Project No: 10040930 under the Horizon Europe Guarantee.



CU and RRUK are investigating an Opposed Free Piston-Based, H_2 -fuelled Pressure Rise Combustion System

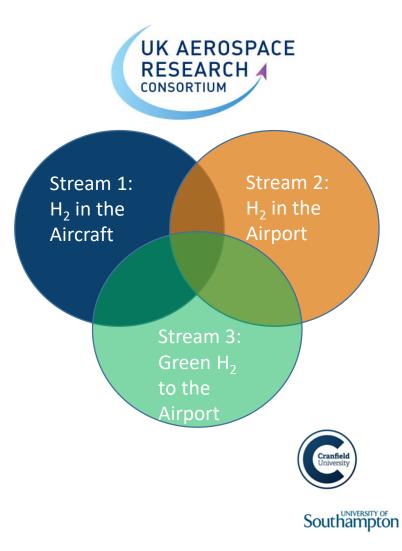
UK-ARC H₂ Group (CU – lead) Scope: Thematic Areas and Mapping of Expertise and Ambitions

	H ₂ in the Aircraft			
H ₂ ai	ircraft design and performance analysis			
interc	H ₂ propulsion system design, integration, and performance analysis (gas turbines (including advanced cycles – intercooling, recuperation, pressure rise combustion etc.), fuel cells, hybrid and turboelectric + distributed propulsion).			
LH ₂ t	LH ₂ tank design, manufacturing, and aircraft integration			
LH ₂ tank fluid movement modelling (sloshing), sensors and gauging				
	fuel system thermal management and control (fuel supply system from tanks to "consumer" (either fuel cell as turbine))			
Solid	state storage			
Aircra	aft engine and combustion noise			
Low I	NOx H ₂ Combustion			
Contr burn)	trails modelling and aircraft trajectory optimisation for contrail avoidance (incl. trade-offs with mission fuel).			
Hybri	id/Dual/Blended-fuels			
	noeconomic Environmental Risk Assessments (TERA) (Mission level and over the life cycle) & Pathways ands decarbonising aviation			
Mate	erials and Manufacturing			
Certif	ification			
	Swansea University Swansea University Shoffold Glasgrow			

Imperial College London

Sheffield.

University of Nottingham


CHINA | MALAYSIA

UK-ARC H₂ Group (CU – lead) Scope: Thematic Areas and Mapping of Expertise and Ambitions

	H ₂ in the Airport
H ₂ aircraft ground operations and airport infrastructure	

H₂ safety (airport, storage, aircraft, refuelling)

Airport design for electric aviation

Swansea University

Prifysgol Abertawe

University of BRISTOL

 \mathbf{X}

QUEEN'S UNIVERSITY BELFAST

University of Nottingham

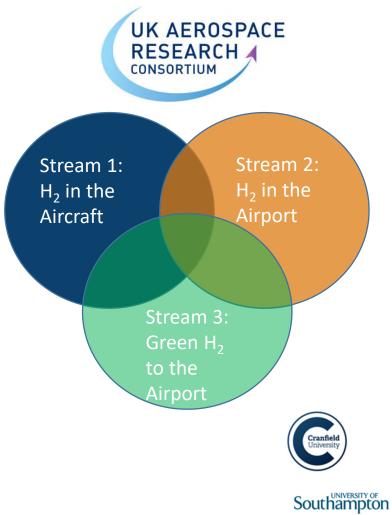
The University

Sheffield.

Of

Imperial College

London



UK-ARC H₂ Group (CU – lead) Scope: Thematic Areas and Mapping of Expertise and Ambitions

H ₂ to the Airport
H ₂ , NG and nuclear gas turbines and rotating equipment for land and marine
H ₂ from renewables
H ₂ from fossil fuels and CCS
Seawater electrolysis (necessary to protect freshwater supplies)
H ₂ / other routes for making SAF
Non-fossil production of lubricants
Automotive and FCs and ICEs for marine

University of BRISTOL

Imperial College

London

University of Nottingham

UK AEROSPACE RESEARCH CONSORTIUM

Advancing UK Aerospace Research through University Collaboration

UK-ARC facilitates and promotes value-added aerospace research projects across university boundaries and with the sector. As a growing community with a net zero focus, UK-ARC connects experts and stakeholders, expands use of university research facilities and builds international collaborations.

Roger Gardner: r.gardner@cranfield.ac.uk, tel: 07831 174503 Donna Lynch: donna.lynch@cranfield.ac.uk

www.ukarc.ac.uk

ENABLE•H2

The ENABLEH2 project is receiving funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 769241

Thank you!

This project has received funding from the EU Horizon 2020 research and innovation programme under GA n° 769241