

CFD for aero-engine combustor design

An introduction

Marco Zedda Combustion Specialist R&T Manager – Aerothermal Tools Hot End Centre of Excellence Civil Large Engines Rolls-Royce plc, Derby

CFD

stands for Computational Fluid Dynamics

CFD

stands for Computational Fluid Dynamics

or Colourful Fluid Dynamics

CFD

stands for Computational Fluid Dynamics

or Colourful Fluid Dynamics

or Completely Fabricated Data?

Content

- The challenges of combustor CFD
- Aero-engine combustor requirements
- Combustion technology development
- External aerodynamics
- Temperature traverse
- Injector design
- Emissions trends (NOx, CO, UHC, soot)
- Metal temperature
- The role of spray modelling
- The role of combustion modelling
- Relight
- Thermo-acoustics
- Volcanic ash
- Summary
- Trends in combustion CFD

The challenges of combustor CFD

- No analytical solution has been found <u>yet</u> to the equations governing fluid dynamics (Navier-Stokes) for an arbitrary flow– one of the great unresolved problems of maths
- Numerical methods can be used to solve them (Computational as opposed to Theoretical and Experimental) using a discretisation approach (e.g. on a mesh)
- Combustion CFD is less mature than say Turbomachinery CFD:
 - Free shear
 - Unsteadiness
 - Multi-phase (e.g. gas, liquid and solid)
 - Reaction (e.g. emissions redictions)
 - Radiation
 - Complex geometries
- Need for validation data to anchor simulations

Aero-engine combustor requirements

- High combustion efficiency (fuel completely burned to obtain maximum heat release)
- Reliable ignition, both on the ground and at altitude
- Wide stability limits (flame should stay alight over wide ranges of pressure, velocity, afr)
- Quiet thermo-acoustics (negligible coupling between acoustics and unsteady heat release)
- Low pressure loss (main cycle parameter)
- Gas temperature outlet profile maximizing turbine life and performance (both 1D and 2D profiles)
- Low emission of NOx, CO, UHC, smoke
- Minimum cost, maximum maintainability
- Size and shape compatible with engine envelope
- Light
- Durability
- Multi-fuel capability (especially for industrial combustors)

Combustor Technology Development

TRL

Combustor Technology Development

TRL

Combustor Technology Development

TRL

Introduction to combustion CFD for design

- Aero-engine combustor development is still dominated by rig testing
- However, CFD is now an integral part of the design and verification process, to support and complement rig and engine testing
- CFD is routinely used for assessing:
 - External aerodynamics
 - Temperature traverse
 - Injector design
 - Emissions trends (NOx, CO, UHC, soot)
 - Metal temperature
- CFD is also used to investigate more other phenomena:
 - Relight/extinction
 - Thermo-acoustics
 - Fuel coking
 - Tolerance to volcanic ash
 - □
- For both established designs (i.e. rich burn) and novel concept (i.e. lean burn)
 - For both main combustors and afterburners

External aerodynamics

mesh

- •OGV exit velocity profiles from measurements
- •OGV exit turbulence profiles from Compressor CFD
- •Bleed flow splits from measurements
- Atmospheric conditions
- •Steady RANS with realisable k-ε
- •~ 10 Million Hex dominant cells per sector
- •2nd order for all terms

Prediffuser exit velocity

External aerodynamics

- General features of the aerodynamics are investigated
- Emphasis on feed to ports, injector and turbine flows
- Uncertainties affecting:
 - Geometry
 - Inlet profiles (time averaged and unsteady)
 - Cooling flows
 - Bleeds
 - Separations
- Full system model used to understand flow distribution and predict pressure losses
- Usually checked against detailed aerodynamics survey measurements

Temperature traverse

CFD used to predict and modify traverse

 6 Rig data (1Rig Cond) PRECISE-MB Old geom, New Rig Flownet (1 Rig cond)

Duct Height %

Emissions and traverse ranking

RANS models used routinely to drive NOx down as long as prediction of DP/P and 2D T map is good

Rolls-Royce

R

DoE mapping

LES results – total velocity

2 cameras measurements **3** cameras measurements velocity_MEAN Magnitude 55 40 PIV 20 Total velocity 0 In plane velocity only CFD

LES results – RMS of axial velocity

PIV

CFD

RANS vs LES for fuel injectors

- LES provides similar predictions to RNG k-eps
- The RMS is better predicted in the Mains region with LES

Soot trend prediction

• Standard 2-equation model used:

$$\overline{\rho} \frac{d(\widetilde{N})}{dt} = \overline{\rho} \Big(\widetilde{R}_{nucl} - \widetilde{R}_{coag} \widetilde{N}^2 \Big)$$
$$\overline{\rho} \frac{d(\widetilde{C}_m)}{dt} = \overline{\rho} \Big(\widetilde{R}_{sg} \widetilde{N} + C_{\delta} \widetilde{R}_{nucl} - \widetilde{R}_{oxid} A \Big)$$

- Flamelet Generated Manifold (FGM) combustion model
- Unsteady nature of soot production and oxidation better captured by LES

LES (instantaneous) RANS

Metal temperature prediction

Tile lifing problem

Reactive CFD (inclusive of soot and radiation by post-processing)

Explicit modelling of tile pedestals

Zoomed-in CHT submodel

- Redesign proved to hit target life via engine thermal paint
- Metal temperature prediction still challenging (CFD difficult to tune), especially for primary zone

Analysis of range of design options

Matching of datum's thermal paint

Role of spray modelling

- Fuel preparation can affect:
 - emissions (NOx, CO, UHC, soot)
 - temperature traverse
 - relight capability
 - □ rumble
 - metal temperature
 - weak extinction
- Sensitivities can be different for different parameters/combustors (e.g. rich vs lean burn)
- Primary and secondary break up are complex time-dependent phenomena, influenced by turbulence intensity and lengthscale

Detailed modelling of primary break up

Fuel placement can be studied in detail and impact the design of the fuel
injector

The role of combustion modelling

- The choice of combustion model depends on the problem and required turnaround time
- Flamelet approaches are often used, especially to start with, as they are cheap to run
- In flamelet models, the chemistry is pre-tabulated and looked up at run time through a small number of parameters
- Some flamelet models have increased in sophistication: enthalpy, mixture fraction and progress variable and their variances are used in the <u>Flamelet</u> <u>Generated Manifold</u> approach (FGM)
- Finite rate chemistry approaches (i.e. chemistry calculated on the fly) have the advantage of accounting for the different timescales of reaction steps, but are more expensive computationally
- <u>Conditional Moment Closure (CMC) used for diffusion flames (e.g. relight)</u>
- <u>Stochastic fields</u> model is being used as well. The approach assumes no prescribed way to link turbulence and chemistry

Modelling combustion for lean burn with LES

24

Rolls-Royce

R

Stochastic fields simulation much more expensive computationally (49 species transported)

Stochastic fields and FGM LES traverse

Temperature Distribution Factor

Stochastic fields prediction slightly more accurate

Stochastic fields and FGM LES CO

Significant underprediction, similar maps produced by the two models

Stochastic fields and FGM LES NOx

NOx mass fraction

Underprediction, 2D map predicted reasonably well, especially by the stochastic fields model

27

Thermo-acoustics

Royce

Deriving LFR TFs from forced CFD

30

LOTAN predictions – growth rate and frequencies

LFR / HFR at 453K

Fuel coking

Coking prone parts of the injector fuel passages can be identified

Volcanic ash deposition

Damaged component

• Regions prone to deposition can be identified and different rates calculated

Rol)୍ୟେ Royce

Summary

- Aero-engine combustor development is carried out by tight combination of experiments and simulations
- CFD is routinely used to support combustor design for:
 - External aerodynamics
 - Temperature traverse
 - Injector design
 - Emissions trends (NOx, CO, UHC, soot)
 - Metal temperature
- CFD is more and more used to investigate other problems as well
- Before use for product development, thorough validation of the methods is required, going from low to high TRL
- Co-operation between industry and academia key to move technology forward

Trends in gas turbine combustion CFD

- Massively parallel computations (the more cores the better?)
- LES as a routine design tool
- Multi-physics, multi-component simulations
- Continuous focus on interfaces (e.g. VR)
- Automation (faster!)
- Increasing research on rumble CFD
- Conjugate heat transfer modelling
- Alternative fuel modelling
- Usage of more detailed chemistry for soot predictions
- Eulerian or Lagrangian predictions of primary break up
- Open source
- Running on GPUs/hybrid platforms
- Use of AI techniques to tune models

