

Saturday 24 September 2022

Greening Aviation: Hydrogen & Decarbonisation Scenarios

Contrails

What can be expected from H₂ fuelled aircraft?

Formation and mitigation

D. Nalianda

Senior Lecturer in Environmental Performance of Integrated Propulsion Systems Propulsion System Performance and Integration – Module Lead Centre for Propulsion and Thermal Power Engineering

- A brief introduction
- Climate effects
- Processes influencing contrail formation
- Prediction Schmidt-Appleman criterion
- Mitigation strategies
- H₂ what to expect

Contrails- <u>Condensation</u> <u>trails</u>

- Ice clouds (8-13 km)- Short lived(non persistent)/ Long lived (Persistent- WMO)
 - "Cooling" effects scattering incoming shortwave solar radiation (RF_{sw}) with minimal atmospheric absorption
 - "Warming" effects- absorbing and reemitting outgoing terrestrial radiation (RF_{LW})

Net radiative forcing (RF)

- Negative shortwave RF during the day
- Longwave-RF impacts of contrails during both day and night are positive

^{*}Radiative forcing is the change in energy flux in the atmosphere caused by natural or anthropogenic factors of climate change as measured by watts / metre

Clouds affect earth's climate

- Characteristics- Optical Thickness (how much light the cloud can intercept) and height
- Radiative "blanket" by absorbing the thermal infrared radiation
- Complicated predictions net effect

Climate effects

Recreated based on data presented in Kärcher, Bernd. (2018). Formation and Radiative Forcing of Contrail Cirrus. Nature Communications. 9. 10.1038/s41467-018-04068-0.

Contrail images

14:35 UTC- May 26, 2012 Multiple contrails off the coast of Newfoundland, Canada. Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite

https://skyvector.com/

Source: NASA- https://earthobservatory.nasa.gov/images/78154/the-evolution-of-a-contrail

Contrail images

16:35 UTC- May 26, 2012 Multiple contrails off the coast of Newfoundland, Canada. Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite

7

Processes influencing the contrail formation

		0-0.1 s	0.1 -1 s	1 -10 s 1	0 -100 s
Jet regime (t = 0-10s)		Aerosol			
Vortex roll-up; Jet vortex interactio	n	/soot	Activation		
Vortex regime (t = 10-100s)		10 nm	into water		
Vortex descent; Mutually induced downward vel.; secondary wake			droplet	Water droplets	
Dissipation regime (t = 100-1000s)			100 nm	freeze and ice	
Stratification; Vortex break-up				crystals grow	
Diffusion regime (t = 1000s- few hours) Atmospheric turbulence, particle sedimentation,		>10,000 /cm ³ small ice crystals need to form		1000 nm	
				Ice crystal grow	
radiative proc	esses, wind shear	ear within a wingspan behind cruising aircraft to make 8 contrails visible		in upp	er wake
Image : Free to use under the <u>Unsplash License</u> https://unsplash.com/photos/Wtn654UyGYA https://www.vecteezy.com/free-vector/aircraft-engine https://www.vecteezy.com/free-vector/aircraft-	8			and su in low	iblimate er wake

Clausius-Clapeyron equilibrium equation for a perfect gas 9

- Thin linear ice particle clouds local liquid saturation, condensation of water on aerosols, and subsequent freezing
- Ice-supersatured air masses (ISSR)contrails spread and grow by uptake of ambient water (several orders of magnitude larger)
- Threshold temperature- temperature below which liquid saturation conditions are reached in the young plume behind the aircraft

The Schmidt-Appleman criterion

Analytical method based mainly on engines efficiency, exhaust temperature, water vapor emission index, ambient temperature and ambient humidity. It provides the temperature threshold of contrails formation

Clausius-Clapeyron equilibrium equation for a perfect gas 10

Jet Exhaust Conditions $G = \frac{C_p p}{\epsilon} \frac{E I_{H_2 0}}{(1 - \eta)Q}$ $EI_{H_{20}} = 1.25 \text{ (water vapour emission index)}$ $c_p = 1,004 \text{ J kg}^{-1} \text{ K}^{-1} \text{ (heat capacity of air)}$

 $\epsilon \equiv 0.622 \text{ W}_{H2O}/\text{W}_{air}$ (molar mass ratio- vapour to air)

Q = Combustion heat per mass of fuel J/kg

η = overall engine efficiency in cruiseconditions

$$\eta = \frac{Thrust * V_{TAS}}{FF * LHV}$$

Clausius-Clapeyron equilibrium equation for a perfect gas 11

 $G = \frac{c_p p}{\epsilon} \frac{EI_{H_2O}}{(1 - \eta)Q}$ $EI_{H_2O} = 1.25 \text{ (water vapour emission index)}$ $c_p = 1,004 \text{ J kg}^{-1} \text{ K}^{-1} \text{ (heat capacity of air)}$ $\epsilon \equiv 0.622 \text{ w}_{H_2O}/\text{W}_{air} \text{ (molar mass ratio- vapour to air)}$

Q = Combustion heat per mass of fuel J/kg

η = overall engine efficiency in cruiseconditions

$$\eta = \frac{Thrust * V_{TAS}}{FF * LHV}$$

Predicting contrails Types

Temperature K

Short Lived Contrail (Dry upper atmosphere)

Predicting contrails Types

13

Image source: https://science-edu.larc.nasa.gov/contrail-edu

Predicting contrails Types

Temperature K

In summary

- If the mixing line crosses the condensation line, a contrail will begin to form at point F.
- The location of point A determines what type of contrail will result.

Persistent Spreading(Moister upper atmosphere)

Contrail Mitigation Strategies

Contrail Mitigation Strategies

$$G = \frac{c_p p}{\epsilon} \frac{EI_{H_2 0}}{(1 - \eta)Q}$$

$$\begin{split} &\mathsf{EI}_{\mathsf{H2O}} = 1.25 \text{ (water vapour emission index)} \\ &\mathsf{c}_{\mathsf{p}} = 1,004 \text{ J Kg}^{-1} \text{ K}^{-1} \text{ (heat capacity of air)} \\ &\epsilon \equiv &\mathsf{0.622} \text{ W}_{\mathsf{H2O}} / \text{W}_{\mathsf{air}} \text{ (molar mass ratio- vapour to air)} \\ &\mathsf{Q} = \mathsf{Combustion heat per mass of fuel (Ker- 42 MJ/kg)} \end{split}$$

η = overall engine efficiency in cruise conditions $\eta = \frac{Thrust * V_{TAS}}{FF * LHV}$

Water extraction from exhaust

WET (Water-Enhanced Turbofan) Engine Concept- MTU

Proposed reduction in climate impact- 80% (in comparison to EIS2000 technology)

*https://aeroreport.de/en/good-to-know/a-brief-guide-how-the-wet-concept-works

Sensitivity analysis: EIH₂O and Relative Humidity

Minimum 53-75% removal depending on the ambient condition

Minimum 82-91% removal depending on the ambient condition

A320-100/ CFM56-5B

LGW LONDON, UNITED KINGDOM RAK MARRAKECH, MOROCCO Distance 2435 km / 1315 nm Mission Performance

Cruise : FL370 / M 0.77 Payload: 13000 kg Load factor : 65.5% (118 pax with 110 kg PL)

Data

TOW: 63.42 tons FOB: 9.85 tons Mission time: 3.18 hrs

https://uk.flightaware.com/live/flight/EZY8893/history/20180 626/0450Z/EGKK/GMMX/tracklog

Simulated SMR aircraft

LGW LONDON, UNITED KINGDOM

RAK MARRAKECH, MOROCCO

Distance 2435 km / 1315 nm

Simulated SMR aircraft*

Mission Performance

Cruise : FL390 / M 0.77 Payload: 13000 kg

TOW: 65488 kg FOB: 9888 kg Block fuel: 8362 kg Mission time: 3 hrs 23 min

*Based on an A320-100 aircraft with two CFM56 powerplants

Simulated SMR aircraft

LGW LONDON, UNITED KINGDOM RAK MARRAKECH, MOROCCO **Distance** 2435 km / 1315 nm

Simulated SMR aircraft [*]	Improved SMR aircraft [#]		
Mission Performance	Mission Performance		
Cruise : FL390 / M 0.77	Cruise : FL390 / M 0.77		
Payload: 13000 kg	Payload: 13000 kg		
TOW: 65488 kg	TOW: 65730 kg		
FOB: 9888 kg	FOB: 8430 kg		
Block fuel: 8362 kg	Block fuel: 7183 kg		
Mission time: 3 hrs 23 min	Mission time: 3 hrs 22 min		

Mission fuel burn reduction – 14.1%

[#] Based on an A320 NEO aircraft with two LEAP -1A powerplants

Simulated SMR aircraft

Simulated SMR aircraft

Simulated SMR aircraft

Simulated SMR aircraft

RH

40%

60%

RH

RH

*Based on an A320-100 aircraft with two CFM56 powerplants

RH

[#] Based on an A320 NEO aircraft with two LEAP-1A powerplants

- Based on and A320 Neo with LEAP 1-A engines
- Single tank (foam insulated) assumed to carry cryogenic fuel
 - Maximum Take off Weight= 79000 kg
 - Mass of fuel= 3300 kg

۲

- Maximum diameter of tank = 1.6 m
- Length of tank= 25.9 m
- Mass of tank= 1259.4 kg

Altitude (Feet)

Improved SMR aircraft – H₂ fuelled

[#] Based on an A320 NEO aircraft with two LEAP-1A powerplants

Persistent Contrail

No Contrail

 The aircraft performance simulation indicated the aircraft would produce over 675 NM of persistent contrails which would be 51% of the range flown

Contrail avoidance

- On a regular trajectory Hydrogen variant 4.4% more energy efficient
- On a contrail avoidance trajectory -Hydrogen variant consumes 1.25% higher energy

-Most importantly no mission-level CO₂!!

Contrail mitigation strategy- what's the best way then?

- Navigational avoidance- effectiveness and extent?
- Water extraction devices
- Technology adoption-
 - Lean combustion and DACs
 - Pure synthetic and biofuels- next to no sulphur and aromatics
 - Kerosene- biofuel blends- reduce soot particles moderately
- Change of fuel

Transition to alternative fuels

Voight C et.al (2021) Cleaner burning aviation fuels can reduce contrail cloudiness Nature Communications Earth and Environment

Recent work by DLR

- five different fuels
- including two traditional, petroleum-based Jet A-1 fuels
- Three blends of Jet A-1 with synthetic jet fuel or bio-based alternative jet fuel.
- The contrail ice size distribution -40% larger
- Effect of Hydrogen content of the semisynthetic fuel blend on the ice crystal size
- The increase in crystal size larger ice crystals sediment and sublimate faster
- Initial ice number concentrations optical thickness: 1 min-old SSF1 contrail is ~30% reduced with respect to the Jet A-1 contrail
- 50–90% reduced ice number concentrations -reduction in the radiative forcing from contrail cirrus by 20–70%

- Contrail ice water content-

Contrails from Hydrogen fuelled engines

- Significant quantities water vapour in the exhaust contrails can be expected to form at typically 10 K higher temperatures
- Could spread to larger areas before evaporating
- Burning of liquid hydrogen -of soot and sulphur emissions- Aerosols in the atmosphere still present
- Smaller number of particles lead to larger droplets and ice particles expected to exhibit a smaller optical thickness in spite of larger water content
- Given larger size of ice particles would sediment earlier
- This suggests that aircraft burning liquid hydrogen may cause more persistent contrails, but with much shorter life spans and possibly lesser climate impact than kerosene
- Water extraction- a remote possibility

Conclusions

- Climate impact of contrails
- Necessary conditions to produce of contrails
- Prediction models to predict contrail formation
- Mitigation strategies

Some of the information included in this presentation has been adapted from research undertaken within project ENABLEH2. This project has received funding from the EU Horizon 2020 research and innovation programme under GA no. 769241

shutterstock.com - 1425346559