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Diffusion and Premixed Flames

Deflagration Flames

Diffusion Flames

• Lower flame temperatures

• Wider stability limits

• Higher carbon content in flame

• Higher radiation (luminous emissivity)

• Rate of combustion influenced by 
Fuel/air mixing rate

Pre-Mixed Flames

• Higher flame temperatures

• Narrower stability limits

• Lower carbon content in flame

• Lower radiation (luminous emissivity)

• Combustion influenced by chemical 
kinetic factors
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Gas Turbine Combustors:
Basic Design Features

Images courtesy of: Lefebvre. A. H., 2010, “Gas Turbine Combustion”, 3rd Edition, McGraw Hill

X High V3  P unacceptable X Flame not satisfactorily anchored 
Poor stability & Low c

X FAR outside stability limits
X T4 too high (turbine material limitations)

 Gas turbine combustor GA
(variations depending on application)   
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Gas Turbine Combustors:
Performance and Operability Requirements

• High combustion efficiency

• Good combustion stability

• Ease of Ignition

• Low pressure loss

• Clean exhaust

• Good temperature traverse quality

• Low emissions

• Design for minimum cost and ease of maintenance

• Size and shape compatible with engine envelope

• Durability

• Multi-fuel capability (particularly for land based applications)

• Low size and weight (aero)

Image courtesy of: Lefebvre. A. H., 2010, “Gas Turbine 
Combustion”, 3rd Edition, McGraw Hill



7

Design Considerations:
Primary Zone

• Main Function: To anchor the flame and to provide sufficient time, temperature and turbulence to essentially achieve complete
combustion of the incoming F/A mixture

• Primary zone air flow pattern is extremely important to the attainment of these goals

• Important to create a “toroidal” flow reversal that entrains and recirculates a portion of the hot combustion gases to provide 
continuous ignition to the incoming F/A mixture

Toroidal Flow Reversal via Swirlers & Primary Hole Jets  
Image courtesy of: Lefebvre. A. H., 2010, “Gas Turbine Combustion”, 3rd Edition, McGraw Hill

• Good design of swirler vane angle, size & number and location of primary holes will allow the two modes of recirculation to 
complement and strengthen each other 
 wide stability limits
 good ignition performance
 less susceptibility to combustion pulsations and noise 
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Design Considerations:
Intermediate Zone

• Main Functions:
 Allows imperfectly mixed fuel rich pockets to undergo complete combustion
 Reduces dissociation losses by allowing recombination of dissociated species before the dilution zone

• Intermediate zone length is a compromise between chamber length (weight) & c

• Typical length  1/2 times flame tube width

• Length ideally dictated partly by:
 Minimum length needed to mix the intermediate air with gas flow and 
 Minimum residence time needed for complete combustion
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Design Considerations:
Dilution Zone

• Typical length  1.5 - 2 times flame tube width

• Main Functions:
• Dilute combustion gases with substantial amount of air
• Provide an outlet stream of uniform temperature (Low value of TTQ)
• Provide a suitable radial temperature distribution (NGV and Turbine Blade Life)

Images courtesy of: Lefebvre. A. 
H., 2010, “Gas Turbine 

Combustion”, 3rd Edition, McGraw 
Hill



10

Fundamental Aspects of the Ignition Process:
The Three Phases of Ignition 

Phase 1: Formation of a flame kernel
• Sufficient size and temperature to be able to propagate
• Success or failure of this phase governed by:

- Energy and duration of the spark
- Local turbulence level
- FAR in the vicinity of the spark plug
- Spark plug location

Phase 2: Propagation of the flame formed in Phase 1 to all parts of the Primary Zone (PZ)
• Success or failure of this phase governed by:

- Overall PZ FAR must be within flammability limits
- Plug location
- General air flow and fuel distribution patterns
- PZ turbulence level

Phase 3: Light Around (annular and tubo-annular combustors)
• Success or failure of this phase governed by:

- Design of interconnector tubes (short & large diameter)
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Fundamental Aspects of the Ignition Process:
Stability and Ignition Loops
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Sources of Combustor Pressure Loss

• Cold loss 

• Pre-combustor diffuser (reduces Mach number of flow from  M 0.3)
• Liner losses - Introduction of air in secondary and dilution zones

- Provide mixing energy through jet penetration and turbulence
- Require 3% loss across NGV leading edge for film cooling 

• Fundamental (hot) loss

• Fundamental thermodynamics dictate that there is always a pressure loss associated with heat release
• With addition of heat there is a reduction in density which results in an increase in velocity (mass flow continuity) and this 

results in a pressure loss (conservation of momentum)

Magnitude of Pressure Losses
Diffuser pressure loss (cold)  1%

Fundamental hot loss  0.2%
Liner losses (mixing) (cold)  3% – 4%

Overall  4% – 5%  
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Pressure Loss Due to Heat Addition

Pressure Loss Due to Heat Addition
Image courtesy of: Lefebvre. A. H., 2010, “Gas Turbine 

Combustion”, 2nd Edition, McGraw Hill

Fundamental Challenge:

- Compressor outlet velocity: >150m/s (M 0.25)

- Flame speed (Jet A-1 in air):

~20 – 100 cm/s (laminar)

~5 – 9 m/s (turbulent)

British Airways spent ~€3.2b on fuel in FY2019. 1%
pressure loss would have cost them  €15m pa!
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Subsonic Flow in a Duct

Converging Duct Diffuser (Diverging Duct)
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GT Combustor: Typical Flow Mach Numbers

RRD BR Series Combustor
Image courtesy of Bryn Jones – Kausis Consultancy

Mach 0.3
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“Ideal” Diffuser Requirements

• Achieves required velocity reduction

• Minimum length

• Minimum pressure loss

• Uniform and stable flow at outlet

- Difficult to achieve with aircraft engines as compressor outlet velocity profiles are peaked and asymmetric >> subject
to variation with changes in altitude and speed

- Non uniformity / instability mean temperature traverse quality and radial temperature distribution are harder to control
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Diffuser Design Choices

Image courtesy of: Lefebvre. A. H. & Ballal, D.R., 2010, “Gas Turbine Combustion”, 3rd Edition, CRC Press
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Diffuser Design Choices:
Faired Diffuser

• Gradual reduction in velocity without inducing stall

• Lips of snout rounded to avoid flow separation. Snout typically comprises
 10% of total combustor airflow (higher for air blast atomisers and low
emission technologies)

Image courtesy of: Lefebvre. A. H. & Ballal, D.R., 2010, “Gas Turbine Combustion”, 3rd Edition, CRC Press

Image courtesy of Bryn Jones – Kausis Consultancy

• Region A: Wake from strut plus diffusion triggers separation. Residual
swirl from OGV worsens the situation

• Region B: Increased velocity reduces flame tube hole CD and produces
unpredictable combustor variability – Difficult to balance aerodynamic flow
patters in liner
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Diffuser Design Choices:
Dump Diffuser

Image courtesy of: Lefebvre. A. H. & Ballal, D.R., 2010, “Gas Turbine Combustion”, 3rd

Edition, CRC Press

• Short conventional prediffuser reduces velocity by 60%

• Air subsequently “dumped” and left to divide an flow around liner
dome

• Standing vortices help maintain uniform and stable division of flow
around the liner

• Sudden expansion results in higher pressure loss than faired diffuser
(50% more)

• Pressure loss penalty more than compensated by substantial
savings in length and weight

• Dump diffuser produces stable flow pattern insensitive to
manufacturing tolerances & variations in inlet velocity profile

• Optimum performance related to (dg/h1) >> the larger the prediffuser
angle, the lower the optimum value of (dg/h1). Trade-off between
prediffuser flow separation loss and dump diffuser pressure loss
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Combustor Sizing:
Pressure Loss Approach
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P3 – Combustor inlet total pressure (Pa)
P4  – Combustor outlet total pressure (Pa)
D  – Dynamic Head (at Aref) (Pa)
W – Combustor inlet mass flow rate (kg/s)
T3 – Combustor inlet total temperature (K)
Aref – Combustor casing cross sectional area at maximum diameter (m2)
R – Gas Constant (J/kg.K) (for Dry Air, R = 287J/kg.K)
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Combustor Sizing:
Pressure Loss Approach

• Designing combustors which are small in size, have low fractional pressure losses along with good mixing characteristics presents
a conflicting situation which can only be optimised in relation to specific engine applications:

 For a “lift” engine a higher overall pressure loss (SFC) may be tolerated in return for a smaller engine (Aref)
 For a long distance cruise aircraft engines, a larger diameter combustor is likely to be tolerated in return for a lower pressure

loss ( SFC)

Low Value  Low SFC High Value  Good Mixing

Low Value  Smaller Combustor
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Combustor Sizing:
Pressure Loss Approach: Design Space

Improvements in technology, increase in risk

• For stationary applications, size (and weight) constraints are 
much lower 

• Can design for lowest P/P (consider trade-off between high 
value of P/D and low value of P/P

• For aero applications, higher pressure loss 
tolerated for reduced size (& weight) 

• Trade-off between SFC and mission fuel 
burn
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Combustor Sizing:
Combustion Efficiency Requirements
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Refer to “Combustion Efficiency” Slides for Derivations
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Combustor Sizing:
Altitude Relight Requirements and Considerations for Aero-Engines

• Engine flame out at altitude can occur due to many different reasons e.g.:
 Engine malfunction
 Bird ingestion
 Volcanic ash
 Deliberate pilot action etc.

• Demonstration of satisfactory altitude relight is an engine certification requirement

• Relighting at altitude is more challenging as combustor pressures, temperatures and velocities are lower relative to SL. This
adversely affects combustion sub-processes:
 Fuel atomisation
 Droplet evaporation
 Ignition
 Reaction rates

• Engine relight involves using high energy igniter plugs suitably positioned to the fuel injector to initiate combustion in a wind
milling engine
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Combustor Sizing:
Altitude Relight Requirements and Considerations for Aero-Engines

• c due to unsatisfactory fuel preparation (poor SMDs, cone angles etc.) resulting in slow shaft acceleration rates

• Potential for over-fuelling in order to achieve suitable shaft acceleration rates. This could result in:
 Compressor surge
 Turbine blades over heating

• Large research activities currently in place to study fuel spray structures (particularly for air blast atomisers) and flame propagation
under sub-atmospheric conditions
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Combustor Sizing:
Altitude Relight – The  Parameter

Image courtesy of: Lefebvre. A. H., 2010, “Gas Turbine Combustion”, 3rd Edition, McGraw Hill

Methodology

• Maximum altitude for operation and minimum acceptable
c at this altitude (typically 70 – 80%) are selected

• Value of  is read from “c vs. ” design chart (values of
P3, T3 and mA are determined from combination of CFD
and experiments)

• Value of (Aref x Dref0.75) obtained

• If unacceptable, either a lower c must be tolerated or
altitude limit lowered

• Final selection made by choosing the larger diameter based on the Pressure Loss Approach and efficiency requirements for
altitude relight
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