

GAS TURBINE ENGINES AND PERFORMANCE

Professor Pericles Pilidis Thermal Power & Propulsion

Jet Engines

A VERSATILE PRIME MOVER

Shaft Power

Images Courtesy of Rolls-Royce

Gas Turbine Engines and Performance - 1-2

THE GAS TURBINE IS A HEAT ENGINE

Input: Heat (Qcc)

Output: Heat (Qr) Work (UW)

Qcc = UW + Qr

Thermal Efficiency η th = UW / Qcc

PRIME MOVER COMPARISON

+ Small - Continuous Flow- Internal Combustion

Emissions

- Higher Fuel Costs

Courtesy of: Wartsila-Sulzer

Siemens multi-shaft combined-cycle power plant turnkey (with cooling tower).

APPLICATIONS

- Aircraft Propulsion Civil Military Helicopters
- Power Generation High Efficiency CCGT - Peak Load
- Oil, Gas, Process Gas Pumping, Electricity,
- Marine Fast Ships High Productivity
 - Fuel Costs

Heat is added to compressed air at (nearly) constant pressure. Thus expansion work is greater than compression work. The surplus is the useful work.

THERMODYNAMICS - Θερμοδυναμικη

Thermal Efficiency η th

Spec Fuel Cons (SFC) = Fuel Flow / Power

Heat Rate = Qcc / UW

Specific Power = Power / Air Flow

THERMODYNAMICS - Θερμοδυναμικη

Some Useful Approximations

Compressor Work = CW = Wc $c_p (T_{out} - T_{in})$ Turbine Work = TW = Wt $c_p (T_{out} - T_{in})$ Useful Work = TW - CW Heat Input = Qcc = Wcc $c_p (T_{out} - T_{in})$ Fuel Flow = Qcc/FCV Density = ρ = p/Rt Mass Flow = W = ρ Av

THERMODYNAMICS - Θερμοδυναμικη

Ideal compression and expansion $P_{out}/P_{in} = (T_{out}/T_{in})^{(\gamma/(\gamma-1))}$

Real compression - $P_{out}/P_{in} = (T_{out}/T_{in})^{\eta_{p}(\gamma/(\gamma-1))}$

Real expansion - $P_{out}/P_{in} = (T_{out}/T_{in})^{(\gamma/(\gamma-1))/\eta_p}$

 η_p is the polytropic efficiency, a measure of losses.

THERMODYNAMICS - Θερμοδυναμικη

Losses: η_p is a measure of losses Isentropic efficiency is also used.

For a given pressure ratio: $\eta_{ise_c} = CW_{id} / CW_{real}$

For a given pressure ratio: $\eta_{ise_t} = TW_{real} / TW_{id}$

SIMPLE CYCLE GT

Image Courtesy of Rolls-Royce

EFFICIENCY VS SPECIFIC POWER

GT CYCLES: EFFICIENCY VS SPECIFIC POWER

Simple Cycle

Recuperated

Intercooled

Reheat

GAS TURBINE CYCLES - SIMPLE CYCLE

Single Shaft vs Multi Shaft

- Independent / Coupled Power Turbine
- Surge Prevention

SINGLE VS MULTI SHAFT

Independent - Coupled Power Turbine Image courtesy of Alstom

PRESSURE	PSIA ATA °C °F	14 7 1 03 15 59	174-8 12-29 360 680	43.8 3.08 659 1218	147 103 480 896	
TRARICAL						
				4		
			12			

SINGLE VS MULTI SHAFT

Surge Prevention

Image courtesy of Rolls-Royce

THE JET ENGINE

Convert Pressure Energy into Kinetic Energy

Mechanical Power Power Turbine

<---Gas Generator--->

Thrust Propelling Nozzle

Images Courtesy of TurboMeca and Rolls-Royce

The jet engine - Θ ermodunamikh

Some Useful Principles

Density = ρ = p/Rt

Mass Flow = $W = \rho Av$

Total energy of the flow = wCpt + wv²/2 = w CpT Speed of sound = a = $(\gamma Rt)^{0.5}$ $(P/p_i)^{(\gamma-1/\gamma)} = T/t = 1 + (g-1)M^2/2$

THE JET ENGINE - PROPULSIVE EFFICIENCY

 $Fn = WeVj - WiVo + An(p_n - p_a)$

- $\eta_{\mathsf{ov}} = \eta_{\mathsf{th}} \, \mathsf{x} \, \eta_{\mathsf{pr}}$
- $\eta_{\rm th}$ Heat to KE
- $\eta_{\mathsf{pr}}\text{-}\mathsf{KE}$ to Thrust

 η_{pr} = FnVo / (KEj+FnVo) = FnVo / (KE) η_{pr} = 2 / (1+Vj/Vo)

THE JET ENGINE - PROPULSIVE EFFICIENCY

 η_{pr} = Thrust Work / KE from engine

THE TURBOFAN ENGINE

Bypass Ratio = Wb/Wc

Reduces SFC and Spec. Thrust but increases diameter Civil and military applications

Gas Turbine Engines and Performance - 4-6

TURBOFANS

Mixed Exhaust High Bypass Turbofan

Image Courtesy of Rolls- Royce

HBP Turbofan with Separate Exhausts

Image Courtesy of Pratt+Whitney

Gas Turbine Engines and Performance - 4-7

Aircraft Engine Design

Aircraft Engine Design

Aircraft Engine Design - Unducted Fan

Aircraft Engine Design - Low Bypass Turbofans

Image Courtesy of SNECMA

Small Gas Turbine

The Future?

Open Rotors - η prop

Advanced cores - η thermal

Combustion with Pressure Rise - η thermal

Biofuels - Hydrogen - CO₂ mitigation

Integration - Distributed Propulsion?

GAS TURBINE CYCLES

Recuperated - Heat Recovery

- Heat Exchanger
- Steam Injection
- Combined Cycles

Cranfield UNIVERSITY

Image courtesy of Rolls-Royce

Cranfield

GAS TURBINE CYCLES - STEAM INJECTION

Image courtesy of General Electric

GAS TURBINE CYCLES - COMBINED CYCLES

Image courtesy of General Electric

GAS TURBINE CYCLES - INTERCOOLING

Cranfield UNIVERSITY

Image courtesy of Rolls-Royce

GAS TURBINE CYCLES - INTERCOOLING

Image courtesy of GE

GAS TURBINE CYCLES:

REHEAT CYCLE FOR POWER GENERATION

Image courtesy of Alstom

GAS TURBINE CYCLES LOW BYPASS REHEATED TURBOFAN

Image courtesy of Rolls-Royce

GROWTH - ZERO STAGING

Image courtesy of General Electric

GROWTH - SCALING:

Vt = same = RxNxC 60 HZ RPM = 3600 (Direct Drive) 50 HZ RPM = 3000 (Direct Drive) $So 1.2 \text{ x R}_{60} = R_{50}$ $And 1.44 \text{ W}_{60} \sim \text{W}_{50}$

POWER TURBINES

Questions & Comments