
How could H₂ Gas Turbine Propulsion change the World?

Sustainability = Environment + Economy

Philosophical views and some studies

Pericles Pilidis - Director Thermal Power MSc, FRAeS, UK Representative ISABE Cranfield University - Thermal Power & Propulsion Acknowledging support of many colleagues

GAS TURBINES FOR AIR LAND AND SEA: A CORE ACTIVITY AT CRANFIELD

1946 - Cranfield College of Aeronautics One of the 4 units was Aircraft Propulsion

1969 - Cranfield Inst of Technology (University)

1993 - Cranfield University (change of name)

H₂, Electrical and Gas Turbines at Cranfield

1994 – Hydrogen for GTs 2000 Cryoplane 2010 – NASA Project 2017 – Hybrid Electric Propulsion Group

Now: ENABLEH2 Airbus/ATI + 3 x Fly Zero ENABEL, Industrial projects + + + +

+ + + Cranfield Own Projects

H₂ to Protect Aviation Socioeconomic Benefits

Good Long Term Economic Case for Aircraft Very Strong Environmental Case Very Strong Economic Case for Civil Aviation Very Strong Economic Case for Society

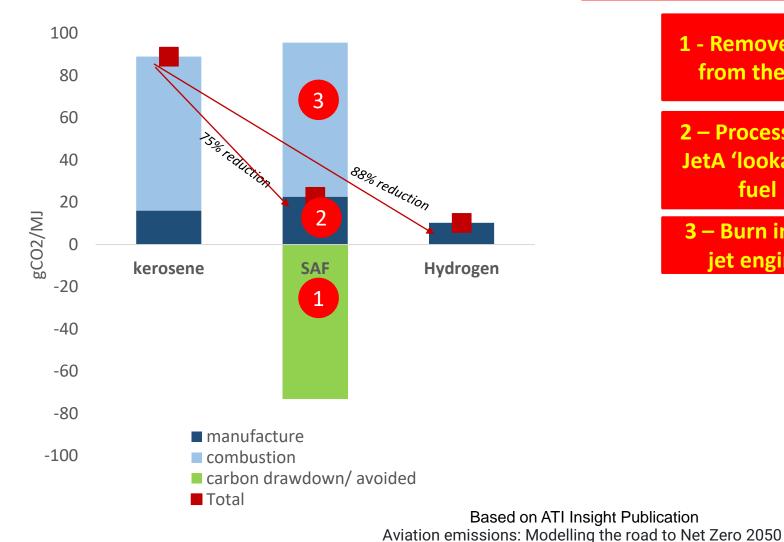
https://www.unpri.org/inevitable-policy-response/whatis-the-inevitable-policy-response/4787.article

https://www.theguardian.com/commentisfree/2020/jan/17/th e-guardian-view-on-flight-shaming-face-it-life-must-change

t started in Sweden, where the term *flygskam* (flight shame) was coined in 2018 to describe the unease about flying experienced by environmentally conscious travellers. The hashtag *#jagstannarpåmarken* (which translates as *#stayontheground*) came into use around the same time, as groups sprang up to share tips.

Other wealthy countries are not immune from such trends: a recent survey of 6,000 people in Germany, France, the UK and the US found 21% had cut back. Such a shift in attitudes makes it all the more disturbing that members of the current government, including the health secretary, Matt Hancock, have yet to catch up. Asked twice on the radio this week whether people should reduce the number of flights they take, the minister said they should not.

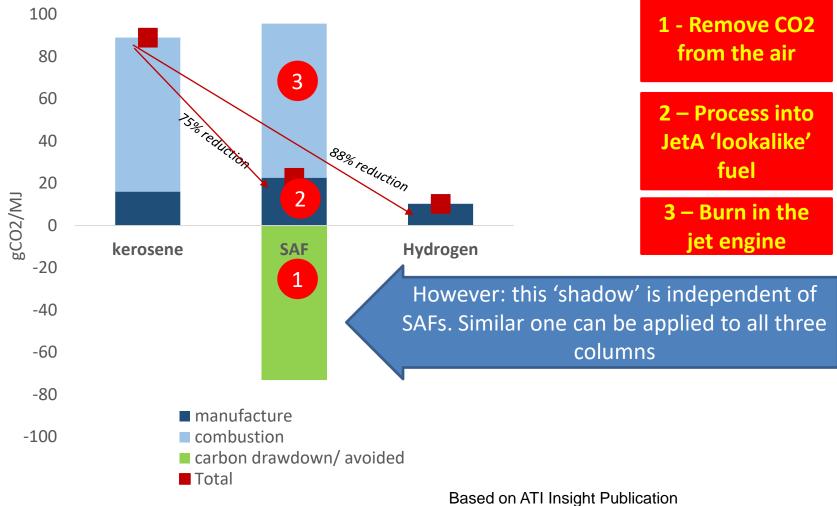
Acceleration of regulation and High Transition Cost


H₂ & Electric

No CO2 No CO, UHCs, aromatics, soot, SOx Much lower potential NOx than Hydrocarbons Cirrus avoidance?

Why Hydrogen

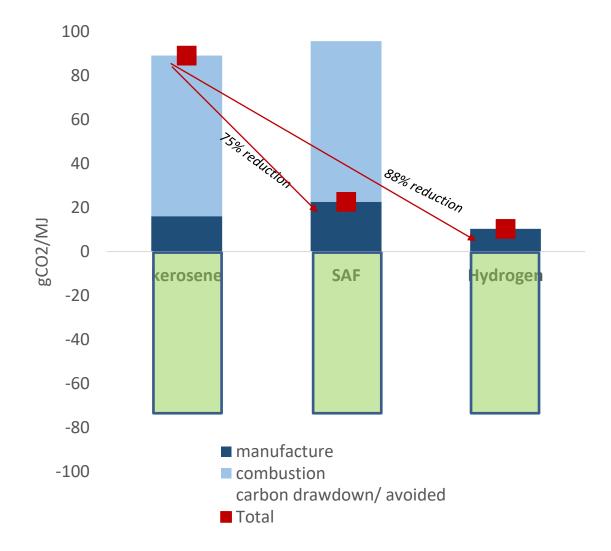
The SAF Cycle


1 - Remove CO2 from the air

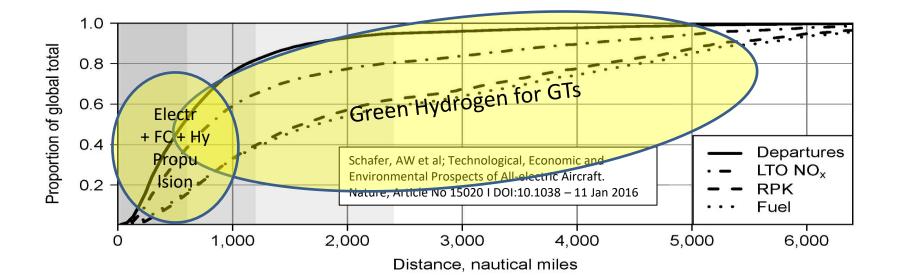
2 – Process into JetA 'lookalike' fuel

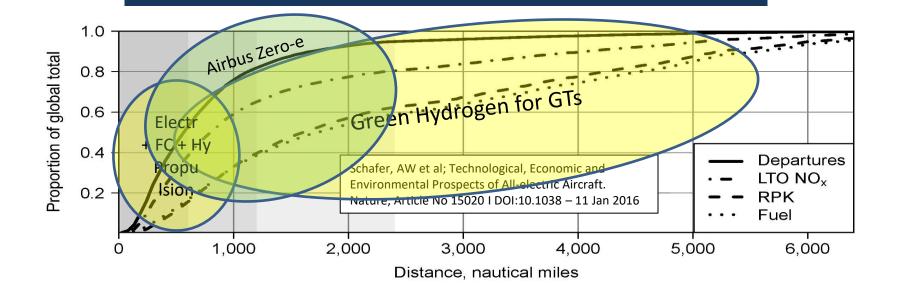
3 – Burn in the jet engine

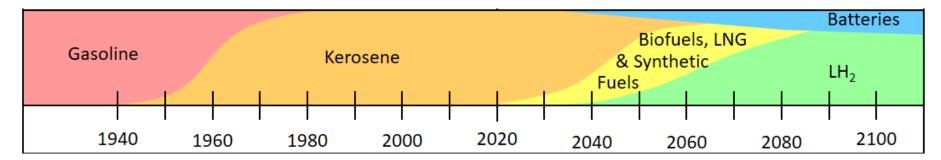
The SAF Cycle



Why Hydrogen

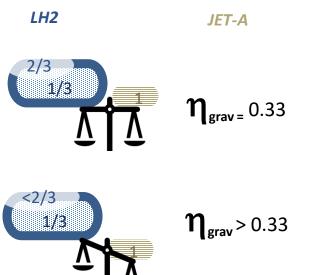

Aviation emissions: Modelling the road to Net Zero 2050


A More Realistic Picture?



Decarbonisation Portfolio

Decarbonisation Portfolio



H₂: VOLUME IS THE MAIN DRIVER, NOT WEIGHT

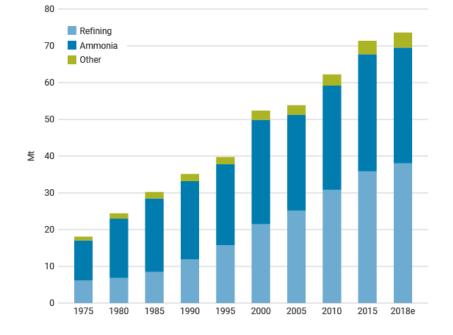
WEIGHT: Gravimetric Efficiency

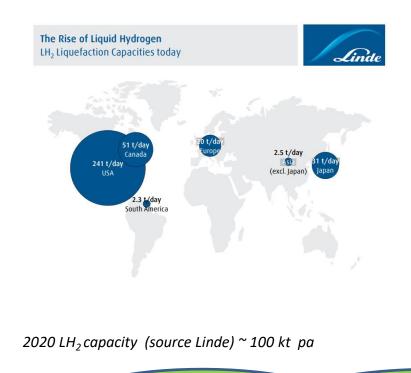
$$\eta_{grav} = M_{fuel} / (M_{fuel} + M_{tank})$$

SAME ENERGY CONTENT (approx)

$$Vol_{LH2} = 4 \times Vol_{Ker}$$
 and $M_{LH2} = 0.36 \times M_{Ker}$

14kg Jet-A1 \rightarrow 44kg CO₂ + 18 kg H₂0


$$5 \text{ kg H}_2 \rightarrow 45 \text{ kg H}_20$$


Take-Off

Hydrogen technology R&D needed

Global annual demand for pure hydrogen (source: IEA)

In service: Pumps, Pipes, Electrolysers, storage, etc - ie the components implied here. Need extensive R&D to meet aerospace certification requirements and economies of experience & scale.

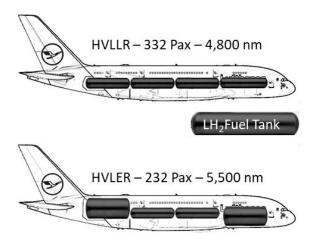
Innovation Waves – H₂ and Electric in Synergy **A Cranfield Perspective**

Conventional Airframe

Wing Tip Propulsor Distributed Propulsion

Innovation Wave IIb 20+ yrs Focus: FC Certification

Innovation Wave III 30 + yrs Focus: Turbocryoelectric



HVLMR From a family of 1st generation H₂ airliners Design Derivative & Vast Integration Challenge – NOT a retrofit!

	AIRBUS A350- 1000	AIRBUS A380- 800	HVLSR	HVLMR	HVLLR	HVLER
Mass (tonnes)						
Ramp	317	577	288	274	304	310
Max. take-off	316	575	287	273	303	309
Max. landing	236	394	275	251	275	276
Max. payload	68	83	80	50	45	36
Operational empty	155	276	194	200	229	238
H2 Tank: grav eff. 0.45			20	33	51	59
Engines	2	4	2	2	2	2
Cruise thrust/engine (kN)	87	81	84	81	88	90
Static thrust/engine (kN)	432	374	421	406	441	448
Range (nm)	8700	8000	1800	3300	4800	5600
Pax (2 class)	315	555	720	388	332	232

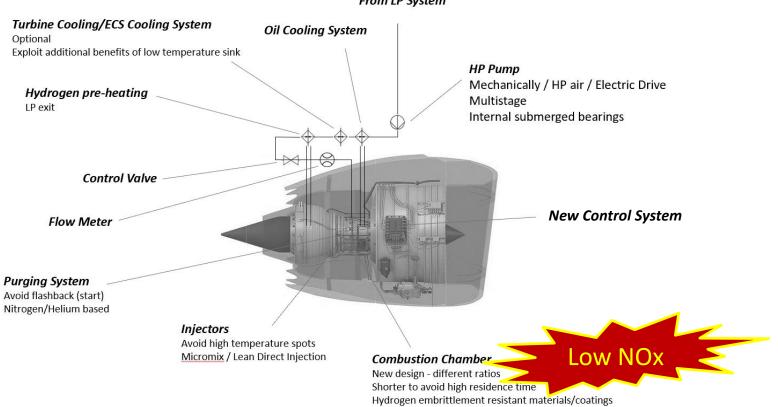
Huete, J., Nalianda, D., & Pilidis, P. (2022). Impact of tank gravimetric efficiency on propulsion system integration for a first-generation hydrogen civil airliner. *The Aeronautical Journal*, 1-9. doi:10.1017/aer.2022.60

1st Innovation Wave H₂ Airliners

HVLSR: 700 Pax - 1800 nm
HVLMR: 388 Pax - 3300 nm
\square
HVLLR - 332 Pax - 4800 nm
HVLER - 232 Pax - 5500 nm

5

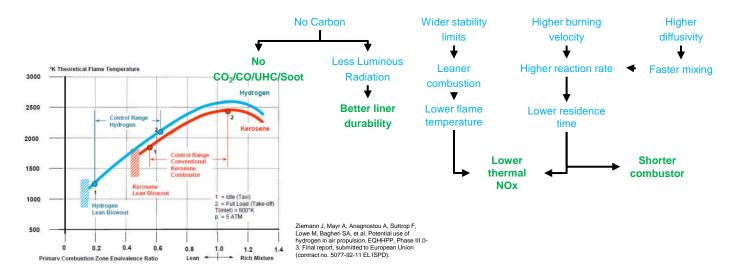
Table of Distances	nm	km
Ottawa - Miami	1193	2210
Ottawa - LA	2063	3820
Ottawa - London	2897	5365
Ottawa - Toulouse	3175	5880
Ottawa - Dakar	3467	6420
Ottawa - Athens	4195	7770
Ottawa - Honolulu	4195	7770
Honolulu -Sydney	4417	8180
Ottawa -Dakar	4457	8255
Ottawa -Rio	4460	8260
Ottawa - Recife	4536	8400
Ottawa - Cairo	4795	8880
Cairo - Singapore	4590	8500
Ottawa -Kuwait	5373	9950
Ottawa - Tokyo	5586	10345


Images Courtesy Lufthansa, amended by the authors

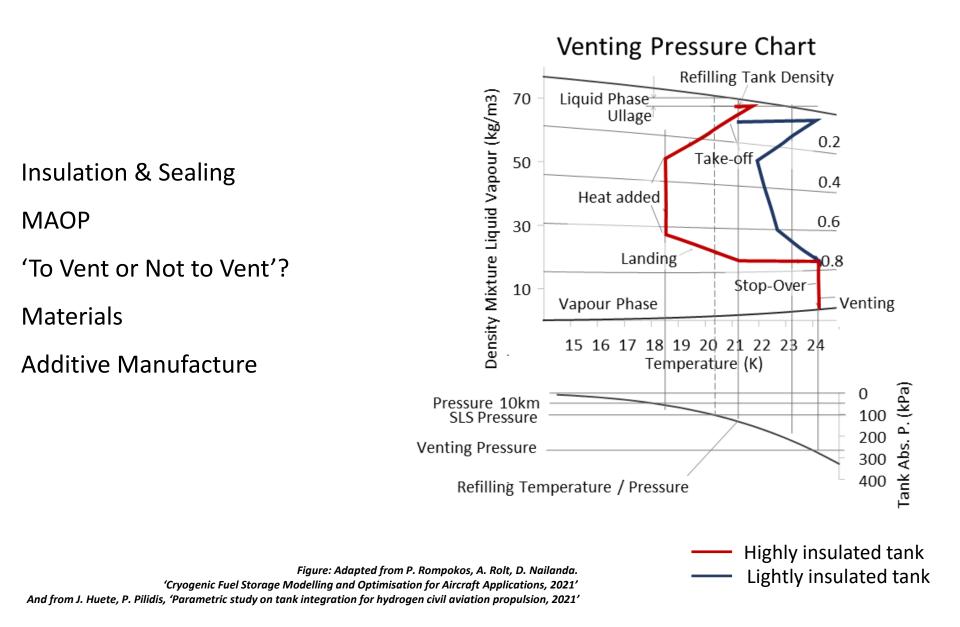
The Trent XWBH

Some GT modifications to burn hydrogen.

Engine image courtesy of Rolls-Royce modified by the authors.


From LP System

2



Hydrogen Low NOx Combustion

LH2 Tanks

Certification accelerators?

Images Courtesy Lufthansa, amended by the authors

- Yr O agree R&D of 100 b for 10 yrs (~HS2 or 1% of EU tourist industry)
- Yr 1-5 fly kerosene prototype for flight qualities
- Yr 1-9 fly conventional 4 Engine testbed (2H₂ + 2Ker) tech & certification update

- Yr 5 -10 develop & fly hydrogen prototypes tech & certification update
- Yr 11 cargo version in service

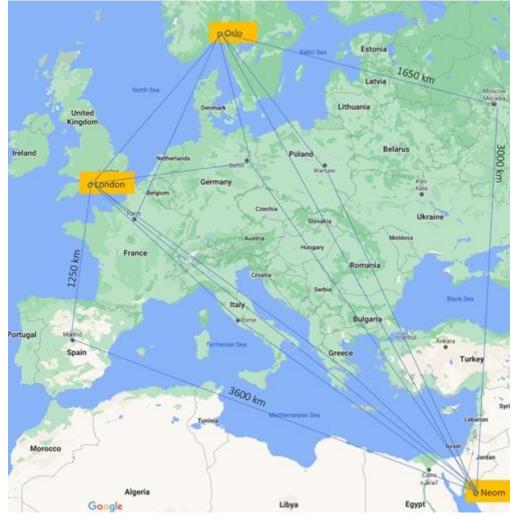
First Innovation Wave

Yr 13 pax versions in service

Introducing H₂ early in very few hubs for a much faster introduction: allows very gradual airport development

Pioneering One Hub Scenario with 1st generation HVLLR

Return trip unrefuelled to important destinations within 4250 km


Almaty 4000 km	Lagos 4200 km		
London 3900 km	Mumbai 4100 km		
Nairobi 3600 km	Oslo 4000 km		
Stockholm 3800 km	St Petersburg 3600 km		

London - 3900 km - 14.3t LH $_2$ one way daily flight for a year needs PV of , 6.79k m² (2025) 1.558 km² (2050).

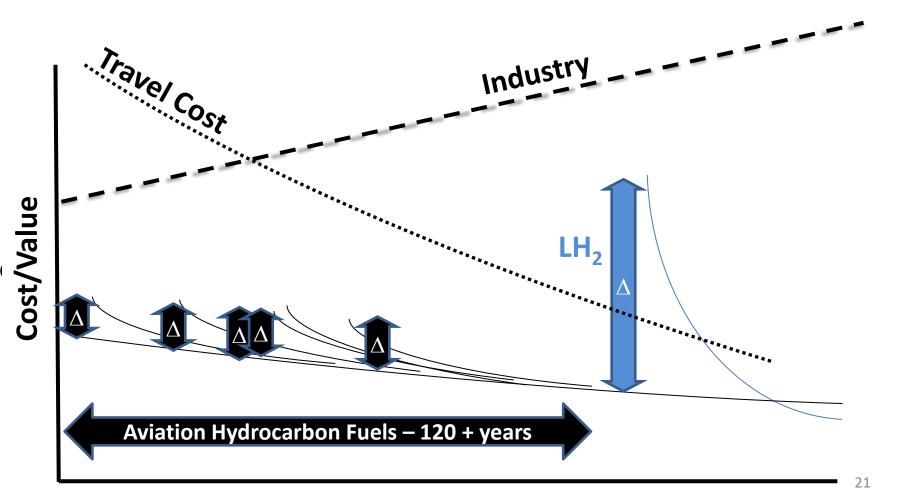
Three hub scenario, opportunity for indirect flights with larger capacity shorter range 1st generation HVLMR

Tankering – better with H₂ London – Madrid – Neom Tankering costs ~ 250 kg H₂ on 18t

Decarbonising the UK – H2 & Electricity – A Cranfield Study

Hydrogen: 35-40 % of electricity supply (use seawater electrolysis) Aviation > 50% of Hydrogen supply International trade

Mainly CCGT and/or Nuclear offer nearly constant power grid scenario Benefits of Thermal plant and better heat use in colder countries (like UK) Start with Scenario 4 (Short Term) and progress to 1 (LT) with international grids? Cost ~ 2% of GDP-


Scenario		Electricity Supply TJ	Peak GW	Installed Capacity GW
Baseline		1,165,320	80	97
S1 - Emphasis on Renewable		5,093,538	110	391
S2 - Emphasis on Nuclear		4,175,280	83	175
S3 - Emphasis on Nuclear and Renewables		4,193,820	. 83	216
S4 - Emphasis on Gas Turbines and Renewa	bles	4,185,720	. 83	214
S5 - Similar to 4 low heat		4,786,380	109	235
S6 - Emphasis on Gas Turbines		4,193,280	83	176

A Liquid Hydrogen Tanker

	LH ₂ Tanker	Ore Brasil
Length OA	375m	362m
Draft FL	10.11m	23m
Depth	35m	30m
DW (000 t)	20	402
Speed (knots)	15.8	15.4
Power (MW)	30	29

Investment Pattern Comparison

The Light Beyond the Clouds

Your Homework

- 1 Share socio-economic benefits of aviation. Worth the cost of this transition.
- 2 Success is dependent on young, talented individuals to deliver the analysis, research, development and products for 'green' aviation

Rewards:

Environment, jobs, travel, tourism, business, growth, careers, etc.