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Strategies in  Design

Ref-Metal fatigue in Engineering – ISBN 978-0-471-51059-8
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Component Lifing
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Engine Component Life
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Understanding Complex Loading

Complex Loading Profile
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Linear Damage Method

The damage caused by one cycle is defined as D= 1/Nf where Nf is the number of repetitions of this 

same cycle that equals life to failure.  The damage produced by n such cycles is then nD= n/Nf.

Failure is predicted when the sum of all ratios becomes 1 or 100%.

Palmgren-Miner Method
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Life Estimation using P-M Method

10%

90%

Example

The data for certain bearing is provided

How many cycles can we expect the bearing 

to last if the load is 1 kN 90% of the time and 2 

kN 10% of the time?

3x107 cycles 2x108 cycles 

1kN

2kN
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Linear Damage Rule

 Sequence of loading and interaction of other events  may have 

major influences on total life estimated . 

 The rate of damage accumulation may depend on the load 

amplitude

 Experimental evidence often indicates that ∑ni/Nf  1 for a low-to-

high or a high-to-low loading sequence.

Even though the linear damage rule ignores these effects, it is most widely 

used because of its simplicity and the fact that none of the other proposed 

methods achieves better agreement with data from many different tests.
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Non-Linear Damage Theories

To overcome the deficiencies with the linear damage assumption, many 

nonlinear cumulative damage rules have been proposed.

A. Fatemi and L. Yang, “Cumulative Fatigue Damage and Life Prediction Theories: A Survey of 

the State of the Art for Homogeneous Materials,” Int. J. Fatigue, Vol. 20, No. 1, 1998.

These theories account for the non-linear nature of fatigue damage 

accumulation by using nonlinear relations such as D= ∑(ni/Nfi)
i

where the power i depends on the load level 

Though many nonlinear damage models have been developed, unfortunately none can 

encompass many of the complicating factors encountered during complex variable 

amplitude loading.
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Understanding Load Cycles

100/200 100/300 -200/200 -200/-100 -300/-100 -300/300 100/200 (twice)
-200/-100 (twice)
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Cycle Counting Methods

• Range Pair Method

• Range Mean Analysis

• Rain Flow or Pagoda Roof Analysis

• Race Track Counting method

• Level Crossing Method

• Peak Counting Method

• Bathtub counting method
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Range Pair Method
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Range Mean Method



14
Copyright © Cranfield University

Level Crossing Method
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Peak Counting Method
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Race Track Method
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Bathtub Method
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Bathtub Method
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Rainflow Method (Pagoda Method)

Endo and Matsuishi

Proposed this method in 1968

ASTM E 1048-85(2005) Rainflow Counting Method
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Rainflow Method Rules

 Rainflow starts at the beginning of the test and again at the inside 
of every peak.

 Rain is allowed to flow on the roof and drip to the next slope till it 
comes opposite to a valley more negative than the valley from 
where it originated. 

 Rain also stops when it is joined by rain from a pagoda roof above

 The beginning of the sequence is a minimum if the initial straining 
is in tension. 

 The horizontal length of each Rainflow is then counted as half 
cycle at the strain range. 
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Rainflow Counting
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Rainflow Counting - Example

Stress (MPa)

250
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150

100

50

0

-50

-100

-150

Time

(a) 250

(b)50

(c)140

(d)-140

(e)160

(f)20

(g)70

(h)-120

(i)250
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Path Range Cycles

ABB’D 250/-140 0.5

BCB’ 50/140 1

DEE’I -140/250 0.5

EFF’H 160/-120 0.5

FGF’ 20/70 1

HE’ -120/160 0.5

E’

Range m a

250/-140 55 195

50/140 95 45

-120/160 20 140

20/70 45 25
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Rainflow Counting - Example
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Extrapolation of stress levels

UTS = 950mean

cyc

Goodman Diagram

400

520

500

260

550

900

end
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Lifing limiting conditions using SN Diagrams

1000

end = 350

cyc

900

10000006309

550
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Rainflow Counting – Classroom Exercise

Number of Cycles when 900 MPa =  1000 Cycles  (1 Cycle)

Number of Cycles when 550 MPa =  6300 Cycles  (2 Cycles)

Total Number of Cycles=  759

Including factor of Safety – 500 cycles

Life of Component is =  500 x 3 = 1500 hrs
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Rainflow Counting – Classroom Exercise

Hence Log Nfa = 3.35 and Nfa = 2239 cycles

and Log Nfd/e = 4.85 and Nfd/e = 70795 cycles

and I/NT = 1/2239 + 2/70795 and NT = 2106 cycles

Further iterations would produce a result of approximately (2106+759)/2
= 1432 cycles

If a FOS of 1.5 is included, then we could guarantee 1000 cycles.
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23 September 2022

VSTOL Thrust Vectoring and Balancing:
Degradation Mitigation Strategies
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23 September 2022

The Sea Harrier- VSTOL

Image Courtesyhttps://alchetron.com/British-Aerospace-Sea-Harrier

https://alchetron.com/British-Aerospace-Sea-Harrier
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The Sea Harrier- VSTOL

Image Courtesy:https://nationalinterest.org/feature/look-out-america-china-wants-its-own-vertical-
takeoff-jets-15220

https://nationalinterest.org/feature/look-out-america-china-wants-its-own-vertical-takeoff-jets-15220
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Thrust Vectoring- Configuration

Hot Nozzle
Cold Nozzle

Puffer Nozzle

Nozzle Configuration



33
Copyright © Cranfield University

Thrust Vectoring- The Balancing act !

Centre of gravity

Considering Equal Thrust or 
equal righting moment  
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Thrust Unbalance in Nozzle

Unbalance due to mismatch in Thrust-

Degradation – A possibility
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Correction of Unbalance

Restoration by opening HPC bleed

Thrust Adjustment
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Engine Performance Modelling

Modelling using  “Turbomatch”

INTAKE FAN

COLD 
NOZZLE

HPC BURNER HPT LPT
HOT 

NOZZLE

PUFFER 
NOZZLE

• Gas Path
• HP Spool
• LP Spool

Bleed

Bypass

Cold Thrust

Engine Thrust
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Thrust Vectoring- Scenarios

Case Study -1 

 Engine performance with LPC  degraded – Thrust Mismatch at 
constant overall thrust.

 Engine with thrust mismatch correction at constant overall thrust  
with bleed adjustment
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Thrust Vectoring- Mismatch in Thrust 

Case 1 - Degradation of LPC   (Unbalanced)
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Thrust Vectoring: Thrust Balancing

Case 1 – HPC Bleed balance
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Thrust Vectoring: Thrust Balancing

Engine model – case 1 – HPC bleed  Balance

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

0% 2% 4% 6% 8% 10% 12% 14%

H
P

C
 o

u
tl

et
 b

le
e

d

LPC degradation

Constant total Thrust



41
Copyright © Cranfield University

Performance deviation due to Degradation

Change in TET due to Bleed Balance
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Performance deviation due to Degradation

Change in Fuel Consumption due to Balancing
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Thrust Vectoring: Mismatch

Thrust Unbalance 
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Thrust Vectoring: a Performance Perspective

Thrust Balance using Variable Area Nozzle
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Performance deviation due to Degradation

Change in TET due to Nozzle Area Adjustment
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Performance deviation due to Degradation

Change in Fuel Consumption- Balancing by VAN
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Thrust Vectoring: Performance 

Comparison of both Methods – Constant Thrust
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Thrust Vectoring - Remote Fan Configuration

Hot Nozzle
Cold Nozzle- Remote Fan

Balancing 
Nozzle
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Centre of gravity

Thrust Balancing by Nozzle 

Thrust Vectoring - Remote Fan Configuration
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Thrust Vectoring: Remote Fan Modelling

Engine Model – Case 2

INTAKE
REMOTE 

FAN
NOZZLE

INTAKE FAN

HPC BURNER HPT LPT
HOT 

NOZZLE

• Gas Path
• HP Spool
• LP Spool
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Thrust Vectoring: a Performance Perspective

Engine model – Case 2 – VAN Constant 
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Thrust Vectoring: a Performance Perspective

Engine model – Case 2 – VAN Balancing
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Thrust Vectoring: a Performance Perspective

Effect on TET- VAN Balancing
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Thrust Vectoring: a Performance Perspective

Engine model – Case 2 – VAN Balancing
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Thrust Vectoring: a Performance Perspective

Engine model – Case 2 – VAN Balancing
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Conclusion

 Understanding engine performance change due to 
engine degradation in context of thrust vectoring 

 Usefulness of  performance simulation 

 Effect of degradation on  the creep life of the  
components

 Methods to mitigate the effect of high temperature creep

 Important for designers, operators and maintainers
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