

GT Component Lifing Gas Turbine Performance Short Course (Montreal 21-24 Sep 2022)

Dr. Suresh Sampath

www.cranfield.ac.uk

© Cranfield University

Complex Loading Profile

The damage caused by one cycle is defined as $D = 1/N_f$ where N_f is the number of repetitions of this same cycle that equals life to failure. The damage produced by n such cycles is then $nD = n/N_f$.

$$\sum \frac{n_i}{N_{fi}} = \frac{n_1}{N_{fi}} + \frac{n_2}{N_{f2}} + \dots =$$

I

Failure is predicted when the sum of all ratios becomes 1 or 100%.

Example

The data for certain bearing is provided

How many cycles can we expect the bearing to last if the load is 1 kN 90% of the time and 2 kN 10% of the time?

- Sequence of loading and interaction of other events may have major influences on total life estimated.
- The rate of damage accumulation may depend on the load amplitude
- Experimental evidence often indicates that ∑ni/Nf ≠ 1 for a low-tohigh or a high-to-low loading sequence.

Even though the linear damage rule ignores these effects, it is most widely used because of its simplicity and the fact that none of the other proposed methods achieves better agreement with data from many different tests.

To overcome the deficiencies with the linear damage assumption, many nonlinear cumulative damage rules have been proposed.

A. Fatemi and L. Yang, "Cumulative Fatigue Damage and Life Prediction Theories: A Survey of the State of the Art for Homogeneous Materials," Int. J. Fatigue, Vol. 20, No. 1, 1998.

These theories account for the non-linear nature of fatigue damage accumulation by using nonlinear relations such as $D = \sum (n_i/N_{fi})^{\alpha i}$

where the power α_i depends on the load level

Though many nonlinear damage models have been developed, unfortunately none can encompass many of the complicating factors encountered during complex variable amplitude loading.

The above could be analysed in either of the following ways

-300/300 100/200 (twice) -200/-100 (twice)

- Range Pair Method
- Range Mean Analysis
- Rain Flow or Pagoda Roof Analysis
- Race Track Counting method
- Level Crossing Method
- Peak Counting Method
- Bathtub counting method

Level Crossing Method

Range (levels)		Cycle Counts	
	7	1	
	6	0	
	5	1	
	4	0	
	3	0	
	2	1	
	1	2	

(b)

Peak Counting Method

Peak	Count
+3.5	2
+25	1
+1.5	2
-1.5	1
-2.5	1
-2.7	1
-3.5	1

Ra	ange units)	Cycle	e ts
	7	1	
	6.2	1	
	5	1	
	3	1.5	}

Rainflow Method (Pagoda Method)

Cranfield Aerospace

Endo and Matsuishi

Proposed this method in 1968

ASTM E 1048-85(2005) Rainflow Counting Method

- Rainflow starts at the beginning of the test and again at the inside of every peak.
- Rain is allowed to flow on the roof and drip to the next slope till it comes opposite to a valley more negative than the valley from where it originated.
- Rain also stops when it is joined by rain from a pagoda roof above
- The beginning of the sequence is a minimum if the initial straining is in tension.
- The horizontal length of each Rainflow is then counted as half cycle at the strain range.

Path	Range	Cycles
ABB'D	250/-140	0.5
BCB'	50/140	1
DEE'I	-140/250	0.5
EFF'H	160/-120	0.5
FGF'	20/70	1
HE'	-120/160	0.5

Range	σ _m	σ_{a}
250/-140	55	195
50/140	95	45
-120/160	20	140
20/70	45	25

 σ_{UTS} = 950

500

 σ_{mean}

Number of Cycles when 900 MPa = 1000 Cycles (1 Cycle) Number of Cycles when 550 MPa = 6300 Cycles (2 Cycles)

Total Number of Cycles= 759

Including factor of Safety – 500 cycles

Life of Component is = $500 \times 3 = 1500$ hrs

Hence Log N_{fa} = 3.35 and N_{fa} = 2239 cycles

and Log $N_{fd/e} = 4.85$ and $N_{fd/e} = 70795$ cycles

and $I/N_T = 1/2239 + 2/70795$ and $N_T = 2106$ cycles

Further iterations would produce a result of approximately (2106+759)/2 = 1432 cycles

If a FOS of 1.5 is included, then we could guarantee 1000 cycles.

VSTOL Thrust Vectoring and Balancing: Degradation Mitigation Strategies

The Sea Harrier- VSTOL

23 September 2022

Image Courtesyhttps://alchetron.com/British-Aerospace-Sea-Harrier

The Sea Harrier- VSTOL

Image Courtesy:<u>https://nationalinterest.org/feature/look-out-america-china-wants-its-own-vertical-takeoff-jets-15220</u>

Thrust Unbalance in Nozzle

Unbalance due to mismatch in Thrust-

Degradation – A possibility

Correction of Unbalance

Restoration by opening HPC bleed

Engine Performance Modelling

- Gas Path
- HP Spool
- LP Spool

Thrust Vectoring- Scenarios

Case Study -1

- Engine performance with LPC degraded Thrust Mismatch at constant overall thrust.
- Engine with thrust mismatch correction at constant overall thrust with bleed adjustment

Thrust Vectoring- Mismatch in Thrust

Case 1 - Degradation of LPC (Unbalanced)

Thrust Vectoring: Thrust Balancing

Case 1 – HPC Bleed balance

Thrust Vectoring: Thrust Balancing

Engine model – case 1 – HPC bleed Balance

Performance deviation due to Degradation

Change in TET due to Bleed Balance

Performance deviation due to Degradation

Change in Fuel Consumption due to Balancing

Thrust Vectoring: Mismatch

Thrust Unbalance

Thrust Balance using Variable Area Nozzle

Performance deviation due to Degradation

Change in TET due to Nozzle Area Adjustment

Performance deviation due to Degradation

Change in Fuel Consumption- Balancing by VAN

Comparison of both Methods – Constant Thrust

Thrust Vectoring - Remote Fan Configuration

Thrust Balancing by Nozzle

Thrust Vectoring: Remote Fan Modelling

Engine Model – Case 2

Engine model – Case 2 – VAN Constant

Engine model – Case 2 – VAN Balancing

Effect on TET- VAN Balancing

Engine model – Case 2 – VAN Balancing

Engine model – Case 2 – VAN Balancing

- Understanding engine performance change due to engine degradation in context of thrust vectoring
- Usefulness of performance simulation
- Effect of degradation on the creep life of the components
- Methods to mitigate the effect of high temperature creep
- Important for designers, operators and maintainers

Thank You