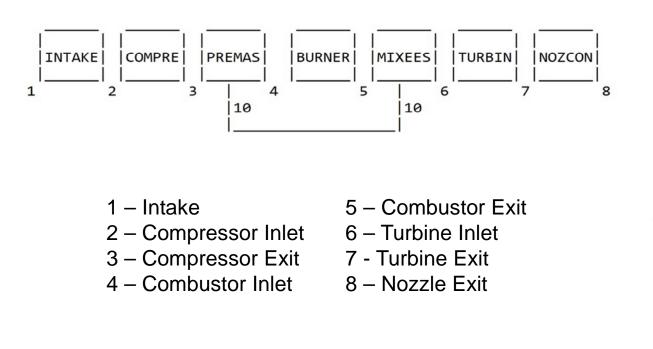
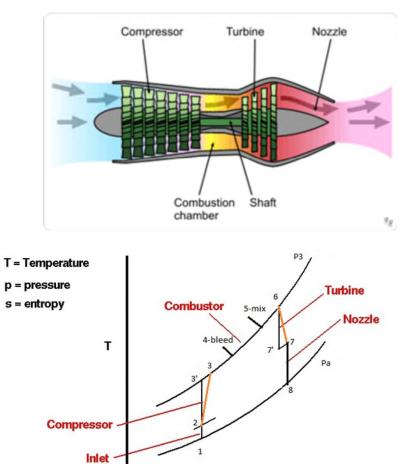


Gas Turbine Performance A Simple hand calculation method

Dr. Suresh Sampath Head of Gas Turbine Systems & Operations

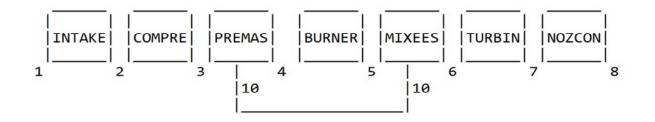

www.cranfield.ac.uk

© Cranfield University 2017

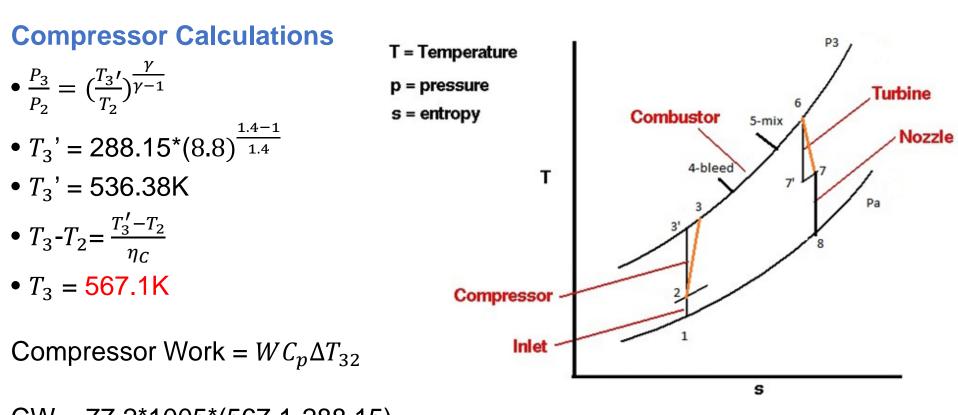


1-spool turbojet example

Performance analysis of a simple 1-spool Turbojet


Simulation through Turbomatch – Webengine Ver 3.0 Copyright © 2022 Cranfield University, United Kingdom

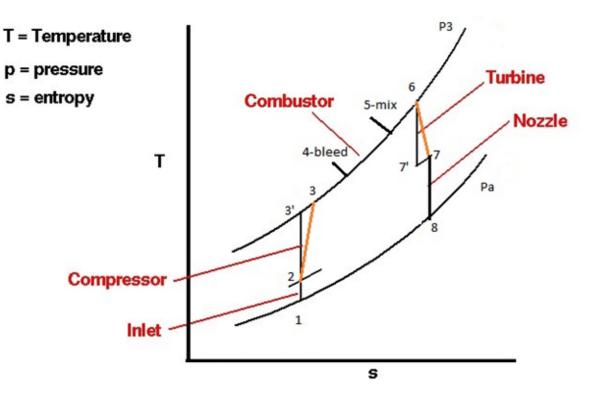
s



1-spool turbojet example – Design point hand calculations

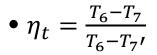
Component Characteristics	Value
Altitude	0
Mach number	0
Compressor design pressure ratio	8.8
Compressor and Turbine efficiency	89%
Bleed mass flow	Nil
Combustor pressure loss	Nil
Inlet mass flow	77.2 kg/s
TET	1141K

CW = 77.2*1005*(567.1-288.15)

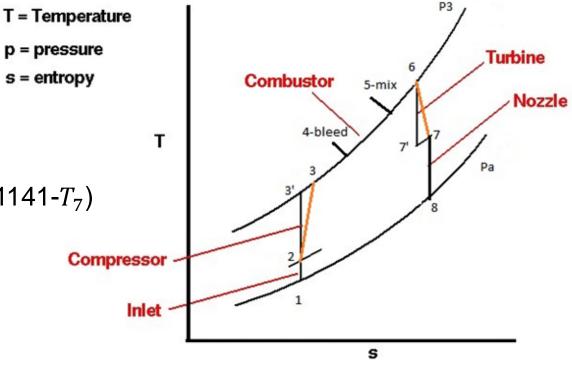

CW = 21.64 MW

Combustor Calculations

- $P_3 = P_4 = 8.8$ bar
- $T_3 = T_4 = 567.1 \text{K}$
- $Q_{in} = WC_p \Delta T_{45}$ = 77.2*1150*(1141-567.1) = 50.96 MW

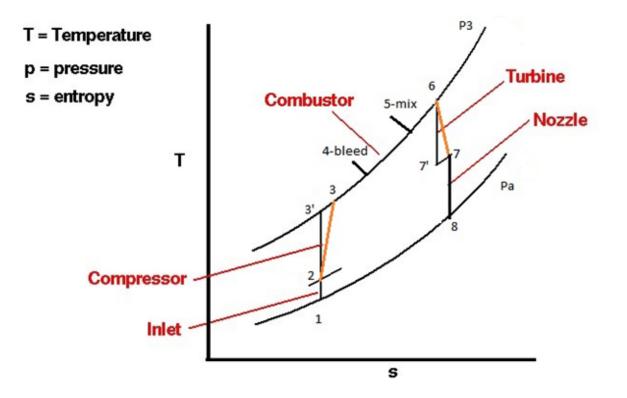

•
$$W_{ff} = Q_{in}/\text{LCV} = 50.96/42.68$$

= 1.194 kg/s



Turbine Calculations

- $T_6 = T_5 = 1141$ K
- *W_{cold}* = 77.2 kg/s
- $W_{hot} = 78.394 \text{ kg/s}$
- CW = TW
- 21.64 x 10^6 = 78.394*1150*(1141- T_7)
- $T_7 = 901 \text{K}$



Turbine Calculations

- $T_7' = 871.34$ K
- γ = 1.333 (hot section)
- $\frac{P_6}{P_7} = \left(\frac{T_6}{T_7}\right)^{\frac{\gamma}{\gamma-1}}$ • $\frac{P_6}{P_7} = 2.9427$
- $P_7 = 2.99$ bar

Nozzle Calculations

Add the isentropic flow eq

•
$$\frac{P_7}{P_c} = 1.852; \frac{P_7}{P_a} = 2.99;$$

• $\frac{P_7}{P_8} = 1.852 \left(As \frac{P_7}{P_c} < \frac{P_7}{P_8} \right) P_8 = 1.614 \text{ bar (Choked nozzle)}$
• $\frac{T_7}{T_c} = 1.1665; T_8 \text{ (static)} = 772.4\text{K}$
• $V_8 = \sqrt{\gamma R T_8} = \sqrt{1.333 * 287 * 772.4} = 543.6 \text{ m/s}$
• $\rho_8 = \frac{P_8}{R T_8} = 0.7281 \text{ kg/m^3}$
• $A = \frac{W_8}{\rho_8 V_8} = 0.1981 \text{ m^2}$

Performance Calculations

- $F_N = W_{in}v_e + A_e(P_e P_a)$
- $F_N = 78.394*543.6 + 0.1981(1.614-1)*10^5$
- $F_N = 54.78 \text{ kN}$

Design performance – Simulation

Please use the WebEngine – 138.250.13.56 on your web browser

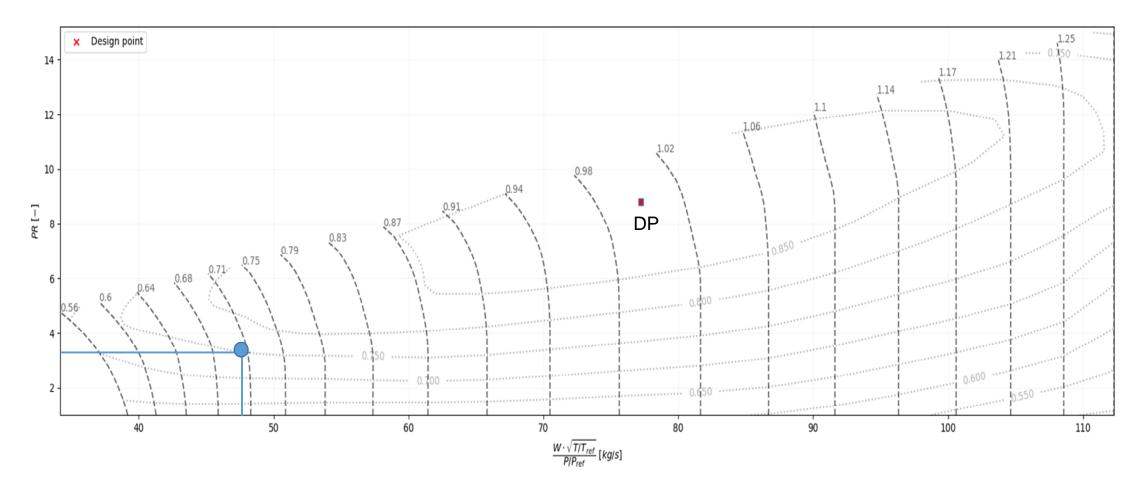
- Login using provided user ID
- Password is isabe&2022
- Use the Run Engine tab
- Please select Turbojet_PCN engine
- Scroll down and click Set Operating Conditions
- Click Run Engine
- Click **Results** and observe the output
- Note that there will be some discrepancy in calculations as the simulation uses variable Cp and γ values
- Hand calculations have used constant **Cp and** γ values

Off-Design performance – hand calculations

Off-design calculation steps

- Step 1: To guess compressor pressure ratio
- Step 2: To guess combustor temperature rise
- Step 3: To guess turbine enthalpy drop
- Step 4:

Determine compatibility of mass flow ($W_{in} = W_{out}$) Determine compatibility of rotation speed ($N_{compressor} = N_{turbine}$) Determine compatibility of work (CW = TW)

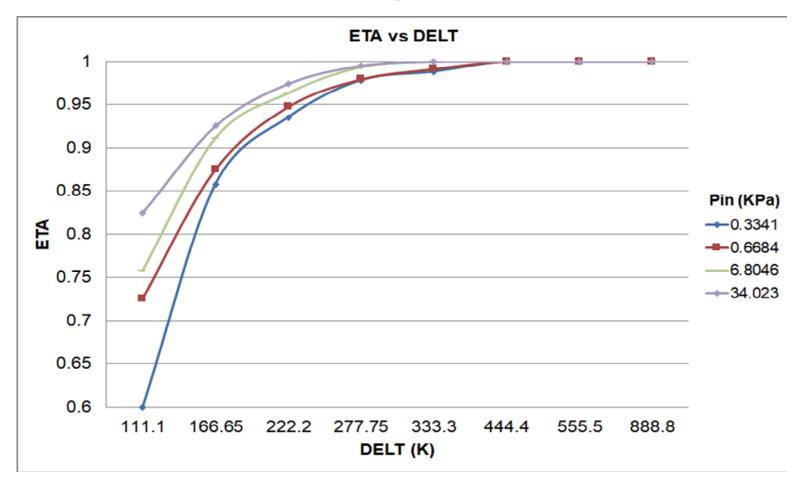


Step – 1

- Let us select an off-design handle for **PCN = 0.7** (70% rotation speed)
- Guess the compressor pressure ratio, $\frac{P_3}{P_2}$
- Obtain the Non-dimension mass flow and corresponding compressor efficiency from the compressor map.
- Compute the mass flow rate and temperature at compressor exit.

Compressor characteristic map

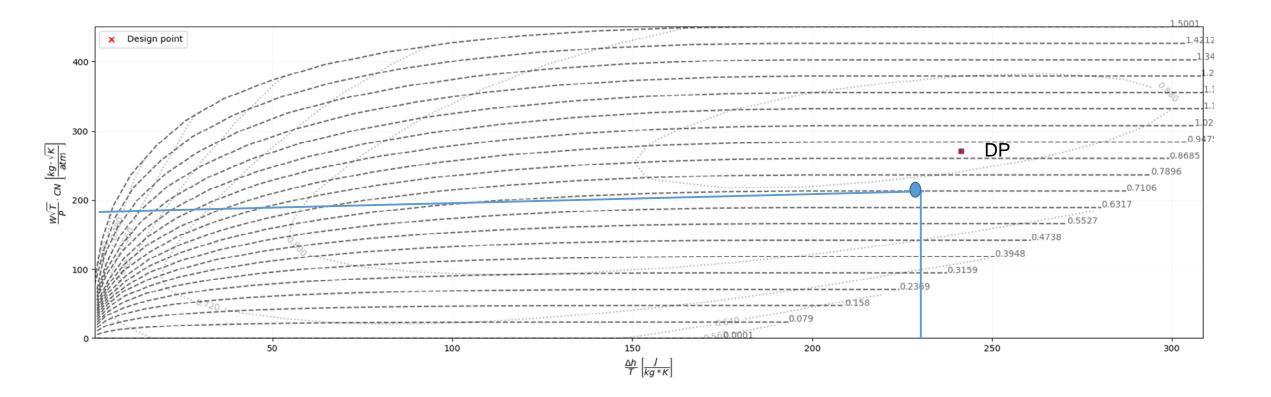
Step – 1


- Guessed pressure ratio, $\frac{P_3}{P_2} = 3.3171$
- Corresponding NDMF = $\frac{W_2 \sqrt{T_2/T_{ISA}}}{P_2/P_{ISA}}$ = 48.094
- W₂= 48.094 kg/s
- Corresponding efficiency of compressor = 0.75

•
$$T_3 - T_2 = \frac{T'_3 - T_2}{\eta_C}$$
; $\Delta T_{32} = 157$ K

• $T_3 = 445.15 \text{K}$

Combustor characteristic map



Step-2

- Guess ΔT_{45} on the combustor map
- $\Delta T_{45} = 333$ K
- Corresponding $\eta_{cc} = 1.0$
- $T_5 = 778.15$ K
- $Q_{in} = WC_p \Delta T_{45} = 48.094^*1150^*(778.15-445.15) = 18.42 \text{ MW}$
- $W_{ff} = Q_{in}/LCV = 0.436 \text{ kg/s}$
- $W_{hot} = 48.53 \text{ kg/s}$

Turbine characteristic map

Step-3

- Guess the turbine $\frac{\Delta H}{T}$
- $\frac{\Delta H}{T} = 236.67 \text{ J/kg-K}$
- $T_5 = T_6 = 778.15$ K
- Corresponding NDMF * CN = 213.29
- Corresponding turbine efficiency = 0.86

•
$$\eta_t = \frac{T_6 - T_7}{T_6 - T_7'}$$

Step-3

•
$$\frac{\Delta H}{T_6} = \frac{C_p(T_6 - T_7)}{T_6}$$
 where $C_p = 1150$ kJ/kg-K; $T_6 = 778.15$ K
• $T_7 = 618$ K
• $\frac{T_6}{T_7'} = \frac{T_6\eta_t}{T_6\eta_t - (T_6 - T_7)} = \frac{778.15 \times 0.86}{778.15 \times 0.86 - (778.15 - 618)} = 1.3146$
• $\frac{P_6}{P_7} = (\frac{T_6}{T_7'})^{\frac{\gamma}{\gamma - 1}} = 2.989 (\gamma = 1.333)$
• $P_7 = 1.11$ bar

Step-4

• Rotation Compatibility:

$$\frac{N}{\sqrt{T_5}} = \frac{N}{\sqrt{T_2}} x \frac{\sqrt{T_2}}{\sqrt{T_5}}$$

(N = 0.7; T₂= 288.15K; T₅ = 778.15K)

LHS = 0.02509

RHS = 0.02509

Note: If the condition is not satisfied, an internal loop runs repeating Step-2 where Combustor Outlet Temperature is guessed again.

Step-4

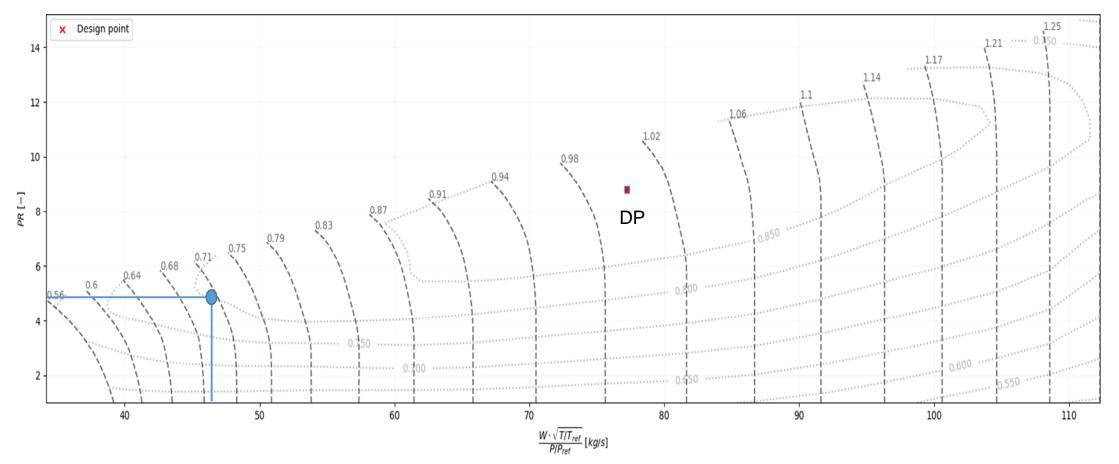
• Mass Flow Compatibility:

 $\frac{W_5\sqrt{T_5/T_{ISA}}}{P_5/P_{ISA}} = \frac{W_2\sqrt{T_2/T_{ISA}}}{P_2/P_{ISA}} x \frac{P_2}{P_3} x \frac{P_3}{P_4} x \frac{\sqrt{T_5}}{\sqrt{T_2}} x \frac{W_5}{W_2}$ (W₅= 48.53 kg/s; T₅ = 778.15K; P₅ = 3.3171 bar; W₂ = 48.094 kg/s; T₂ = 288.15K; P₂ = 1 bar)

LHS = 24.042

RHS = 24.042

Note: If the condition is not satisfied, an internal loop runs repeating Step-3 where turbine enthalpy drop is guessed again.


Step-4

Is the Compressor Work = Turbine Work?

- CW = 48.094*1005*(445.15-288.15)
- CW = 7.589 MW
- TW = 48.53*1150*(778.15-618)
- TW = 8.938 MW
- The Compressor work is not equal to the Turbine work.
- Step 1 is repeated where a new pressure ratio on 0.7 speed line is guessed.

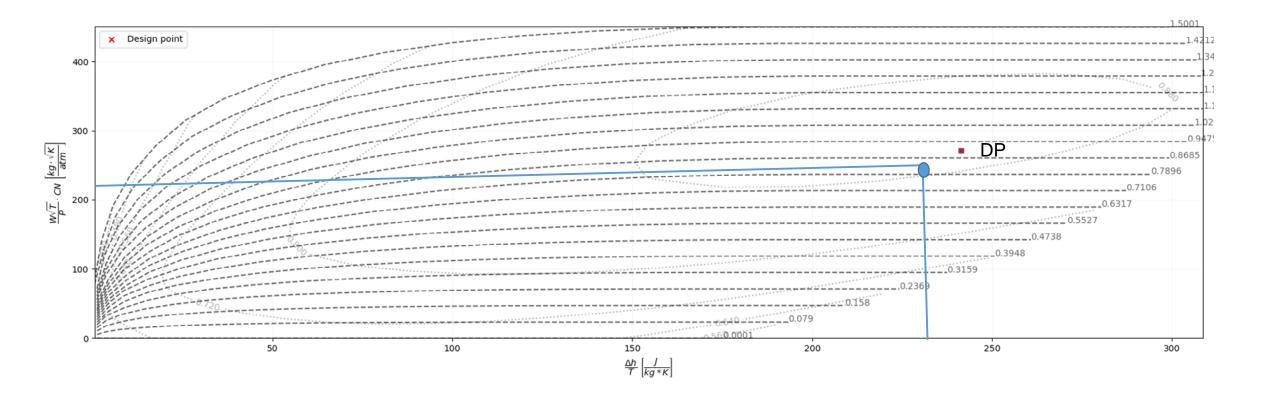
Compressor characteristic map

Step – 1

- Guessed pressure ratio, $\frac{P_3}{P_2} = 4.514$
- Corresponding NDMF = $\frac{W_2 \sqrt{T_2/T_{ISA}}}{P_2/P_{ISA}}$ = 46.307
- W₂= 47.307 kg/s
- Corresponding efficiency of compressor = 0.791

•
$$T_3 - T_2 = \frac{T_3' - T_2}{\eta_C}$$
; $\Delta T_{32} = 194.31$ K

• $T_3 = 482.46$ K



Step-2

- Guess ΔT_{45} on the combustor map
- $\Delta T_{45} = 359.34 \text{K}$
- Corresponding $\eta_{cc} = 0.9996$
- $T_5 = 841.8$ K
- $Q_{in} = WC_p \Delta T_{45} = 46.307^*1150^*(841.8-482.46) = 19.136$ MW
- $W_{ff} = Q_{in}/LCV = 0.419 \text{ kg/s}$
- $W_{hot} = 476.726 \text{ kg/s}$

Turbine characteristic map

Step-3

- Guess the turbine $\frac{\Delta H}{T}$
- $\frac{\Delta H}{T} = 244.234 \text{ J/kg-K}$
- $T_5 = T_6 = 841.8 \text{K}$
- Corresponding NDMF * CN = 230.35
- Corresponding turbine efficiency = 0.872

•
$$\eta_t = \frac{T_6 - T_7}{T_6 - T_7'}$$

Step-4

• Rotation Compatibility

$$\frac{N}{\sqrt{T_5}} = \frac{N}{\sqrt{T_2}} x \frac{\sqrt{T_2}}{\sqrt{T_5}}$$

(N = 0.7; T₂= 288.15K; T₅ = 841.8K)

LHS = 0.02413

RHS = 0.02413

Note: If the condition is not satisfied, an internal loop runs repeating Step-2 where Combustor Outlet Temperature is guessed again.

Step-4

• Mass Flow Compatibility

 $\frac{W_5\sqrt{T_5/T_{ISA}}}{P_5/P_{ISA}} = \frac{W_2\sqrt{T_2/T_{ISA}}}{P_2/P_{ISA}} x \frac{P_2}{P_3} x \frac{P_3}{P_4} x \frac{\sqrt{T_5}}{\sqrt{T_2}} x \frac{W_5}{W_2}$ (W₅= 46.726 kg/s; T₅ = 841.8K; P₅ = 4.514 bar; W₂ = 46.307 kg/s; T₂ = 288.15K; P₂ = 1 bar)

LHS = 17.6926

RHS = 17.6926

Note: If the condition is not satisfied, an internal loop runs repeating Step-3 where turbine enthalpy drop is guessed again.

Step-4

Work Compatibility

Is the Compressor Work = Turbine Work?

CW = 9.113 MW

TW = 9.113 MW

- The Compressor work is equal to the Turbine work. And the solution is now converged.
- Engine performance parameters can now be calculated
- The next step is to follow the calculation to the nozzle from the turbine exit to check the choking condition

Nozzle Calculations

- $\frac{P_7}{P_c} = 1.852; \frac{P_7}{P_8} = 1.564$
- $P_8 = 1$ bar as nozzle is unchoked $\left(\frac{P_7}{P_c} > \frac{P_7}{P_8}\right)$
- $T_8 = 663.02$ K; $t_8 = 586.4$ K
- $T_8 = t_8 + v_8^2/2C_p$
- $v_8 = 402.9 \text{ m/s}$
- $F_N = W_{in}v_e = 18.55$ kN

Off-Design performance – Simulation

Please use the WebEngine – 138.250.13.56 on your web browser

- Use the Run Engine tab
- Please select Turbojet_PCN engine
- Select PCN as Power Setting and provide a value of 0.7
- Scroll down and click Set Operating Conditions
- Click Run Engine
- Click Results and observe the output
- Note that there will be some discrepancy in calculations as the simulation uses variable Cp and γ values
- Hand calculations have used constant **Cp and** γ values

Off-Design performance – Conclusions

- The engine simulation is an iterative process to calculate off-design performance.
- The accuracy of the solution depends on the level of detail and accuracy of component maps available for performing the calculations.
- The engine simulation did not involve bleeds, combustor pressure loss, flow mixing. The level of complexity increases with double and triple spool as compatibility has to be performed on all shafts.
- The alternate method for the obtaining solution is Matrix method

Off-Design performance – Simulation exercise 1

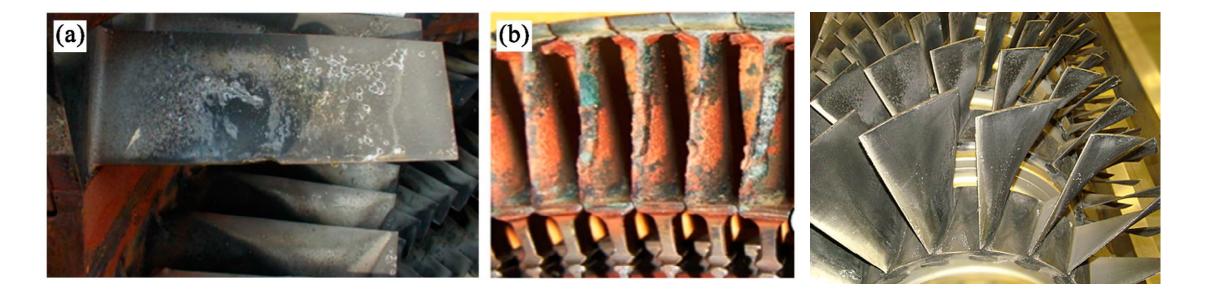
Please use the WebEngine – 138.250.13.56 on your web browser

- Use the Run Engine tab
- Please select Turbojet_TET engine
- Please complete the table below

		Compressor				Turbine				Performance			
SL	Operating condition	Pressure ratio	Exit temperature	Efficiency	Work	Pressure ratio	Exit temperature	Efficiency		Net thrust	SFC	Mass flow	Fuel flow
	Design point			Lineleney	WORK			Linelency	WORK	thust		indust now	110 W
1	TET = 1141K												
	OP1												
2	TET = 900K												
	OP2												
3	TET = 1000K												
	OP3												
4	TET = 1200K												
	OP4												
5	TET = 1300K												

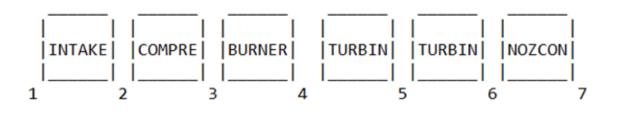
Off-Design performance – Simulation exercise 2

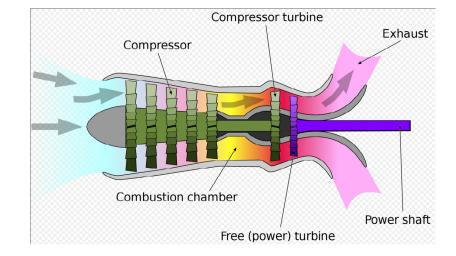
- Please select **Turbojet_TET** engine
- Please complete the table below (TET is constant = 1141K)
- Operating condition (Altitude, Temperature deviation, Mach no.)


	Operating condition	Compressor				Turbine				Performance				
	(Altitude, Temp dev,									Net				
SL	Mach no)	Pressure ratio	Exit temperature	Efficiency	Work	Pressure ratio	Exit temperature	Efficiency	Work	thrust	SFC	Mass flow	Fuel flow	
	Design point													
1	0, 0, 0													
	OP1													
2	0, -15, 0													
	OP2													
3	2000, -10, 0.5													
	OP3													
4	5000, 0, 0.6													
	OP4													
5	8000, 10, 0.7													
	OP5													
6	10000, 0, 0.8													
	OP6													
7	6000, 20, 0.8													
	OP7													
8	0, 0, 0.6													

Off-Design performance – Degradation

Component degradation


- Engine components undergo degradation through its lifetime
- Common faults fouling, erosion, shroud clearance
- Causes reduction in engine output



Turboshaft example

Performance analysis of helicopter turboshaft engine

- 1 Intake
- 2 Compressor
- 3 Combustor
- 4 Compressor turbine
- 5 Power turbine
- 6 Exhaust

Degradation – Simulation exercise 3

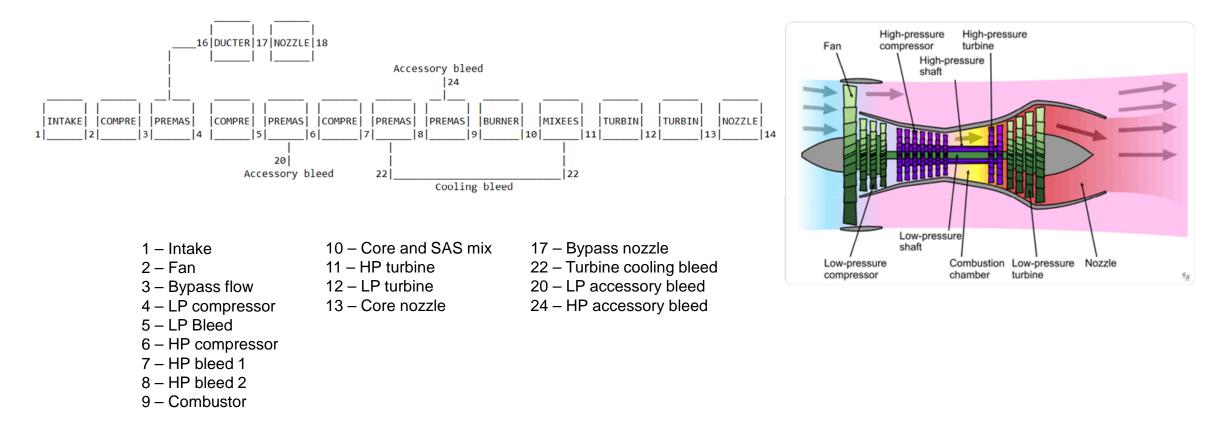
Please use the WebEngine – 138.250.13.56 on your web browser

- Use the Run Engine tab
- Please select Turboshaft engine

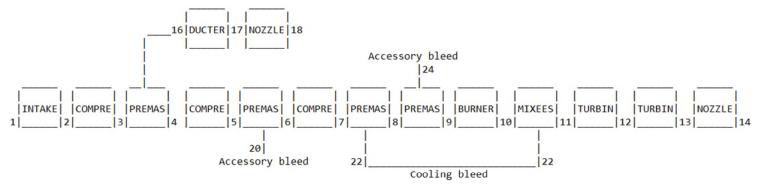
		Compre	essor faults	6	Turbine faults				
Operati	ng condition	PR Deg	FC Deg	ETA Deg	DH deg	TF deg	ETA deg		
	OP1	0%	-1%	-2%	0%	0%	0%		
	OP2	-2%	0%	0%	0%	0%	-2%		
	OP3	0%	0%	0%	-1%	0%	-3%		
	OP4	-1%	-1%	-3%	0%	0%	0%		
	OP5	0%	0%	-4%	0%	0%	-2%		
	OP6	0%	0%	0%	-2%	-3%	0%		
	OP7	-3%	2%		0%				
				-3%		-1%	-1%		
	OP8	0%	1%	0%	0%	-2%	-4%		

Degradation – Simulation exercise 3

Please use the WebEngine – 138.250.13.56 on your web browser


- Use the Run Engine tab
- Please select **Turboshaft** engine and impose the degradation conditions

		Compressor		Turbine				Power Turbine			Performance						
SL	Operating condition	Pressure ratio	Exit temperature	Efficiency	Work	Pressure ratio	Exit temperature	Efficiency	Work	Pressure ratio	Exit temperature	Efficiency	Work	Power	SFC	Mass flow	Fuel flow
1	Design point																
2	OP1																
3	OP2																
4	OP3																
5	OP5																
6	OP6																
7	OP7																
8	OP8																


2-spool turbofan example

Performance analysis of 2-spool turbofan engine

2-spool turbofan example – Design point hand calculations

Component Characteristics	Value	Component Characteristics	Value	Component Characteristics	Value
Altitude	10668m	LP compressor pressure ratio	2.36	HP turbine auxiliary work	500 W
Mach number	0.8	HP compressor pressure ratio	8.45	HP compressor efficiency	90%
Fan pressure ratio	1.65	LP and HP compressor efficiency	88%	LP compressor auxiliary work	500 W
Fan efficiency	90%				029/
Bypass ratio	5.5	LP accessory bleed	Nil	LP compressor efficiency	93%
Bypass railo	5.5	HP cooling bleed	13%	Engine handle	TET/PCN
Bypass pressure loss	1%	HP accessory bleed	1%		
Inlet mass flow	170 kg/s	HF accessory bleed	1 70	DP net thrust	25.7 kN
iniet mass now	170 Kg/3	Combustor pressure loss	5%		
TET	1360K	Combustion efficiency	99.9%	DP fuel flow	0.4 kg/s

Please use the WebEngine – 138.250.13.56 on your web browser

- Use the Run Engine tab
- Please select Turbofan_PCN engine

					PCN									
							T/O					R/T		
			Input		1.1									
										Cruise		-		
Operating condition	Time (mins)	Altitude (m)	Mach number	PCN	1		l	Climb 1						
T =:	_	0	0	07										
Taxi	5	0	0	0.7	0.9									
Takeoff	1	0	0	1.1	0.9									
Takeon		Ū	Ŭ						Climb 2					
Climb 1	5	3000	0.5	0.9	0.8				Crimb 2	J				
					0.0									
Climb 2	10	7000	0.7	0.8		Taxi					L/R		Taxi	
Cruico	100	10000	0.0	1	0.7							L		
Cruise	123	10000	0.8	I										
Low Rating	30	5000	0.75	0.7										
					0.6									
Reverse Thrust	1	0	0.4	1.1										
	_													,
Taxi	5	0	0	0.7		5	6	11	21		4 174	175	180	
									Mi	ssion time (minutes)				

• The temperature-stress and stress-LMP relations are provided below:

TET (K)	Stress (MPa)	Stress (MPa)	Р
1570	350	100	37.0
1525	300	150	36.0
1290	265	200	35.0
1215	250	250	34.5
1070	200	265	34.1
1040	150	300	34.0
900	100	350	33.9

Assuming that we have been able to determine the operating temperatures and stress levels, from the Larson-Miller chart we can provide the parameter P in the equation:

•
$$P = \frac{T}{1000} (Log t_f + 20)$$

- Where,
 - T = Temperature K (TET)
 - t_f = Time to failure

• Calculate the number of cycles the engine could operate in this mode until failure. Also apply a factor of safety of 1.5 and compute the hours of operation the engine can sustain based on LMP.

		Input			Output					
					Net		Turbine			tf
Operating condition	Time (mins)	Altitude (m)	Mach number	PCN	Thrust	Fuel flow	inlet T11	Stress (Mpa)	Р	(hours)
Тахі	5	0	0	0.7						
Takeoff	1	0	0	1.1						
Climb 1	5	3000	0.5	0.9						
Climb 2	10	7000	0.7	0.8						
Cruise	123	10000	0.8	1						
Low Rating	30	5000	0.75	0.7						
Reverse Thrust	1	0	0.4	1.1						
Тахі	5	0	0	0.7						

	— , , , , , , , , , , , , , , , , , , ,		
Operating condition	Time (mins)	t _f (hours)	T/tf
Taxi	5		
Takeoff	1		
Climb 1	5		
Climb 2	10		
Cruise	123		
Low Rating	30		
Reverse Thrust	1		
Taxi	5		
Total	180		

- □ Total number of cycles using Miner's Law, $N = 1/(Total T/t_f)$
- □ Applying FOS = 1.5, the number of cycles, Nfos = N/1.5
- **Total number of hours before failure criteria**, $T = Nfos \times 180/60$

- Consider Fan efficiency degradation of 3%. Estimate the reduction in the operating hours due to the faulty component for the same mission profile
- Enter -3 in Compressor efficiency degradation index (Corresponds to 97% fan efficiency scaling)

		Input			Output					
					Net		Turbine			tf
Operating condition	Time (mins)	Altitude (m)	Mach number	PCN	Thrust	Fuel flow	inlet T11	Stress (Mpa)	Р	(hours)
Тахі	5	0	0	0.7						
Takeoff	1	0	0	1.1						
Climb 1	5	3000	0.5	0.9						
Climb 2	10	7000	0.7	0.8						
Cruise	123	10000	0.8	1						
Low Rating	30	5000	0.75	0.7						
Reverse Thrust	1	0	0.4	1.1						
Тахі	5	0	0	0.7						

	— ()		
Operating condition	Time (mins)	t _f (hours)	T/tf
Taxi	5		
Takeoff	1		
Climb 1	5		
Climb 2	10		
Cruise	123		
Low Rating	30		
Reverse Thrust	1		
Тахі	5		
Total	180		

- □ Total number of cycles using Miner's Law, $N = 1/(Total T/t_f)$
- □ Applying FOS = 1.5, the number of cycles, Nfos = N/1.5
- **Total number of hours before failure criteria**, $T = Nfos \times 180/60$

Thank You

Email: <u>s.sampath@cranfield.ac.uk</u> Phone: +44-1234-754712